https://www.dimamath.com

Exercice 1

Résoudre dans \mathbb{R} les équations suivantes :

$$e^{3-x} = 1$$
; $e^{2x^2+3} = e^{7x}$; $2e^{-x} = \frac{1}{e^x + 2}$; $e^{x^3} = e^8$; $e^{x+1} = e^{\frac{1}{x}}$; $e^{x^2} = \left(e^2\right)^3 e^{-x}$; $e^{x^2} = e^{x-2}$
 $e^{2x} - 3e^x + 2 = 0$; $4e^{2x} - 4e^{x} + 1 = 0$; $e^{2x} - e^x + 2 = 0$

Exercice 2

Résoudre dans \mathbb{R} les inéquations suivantes :

$$e^{x^2} \le \frac{1}{e^2}$$
; $(e^x)^3 \le e^{x+6}$; $e^x \le \frac{1}{e^x}$; $(e^x - 1)e^x > e^x - 1$; $e^{2x} < e^x$; $3e^{2x} + e^x - 4 < 0$

Exercice 3

Déterminer les dérivés des fonctions suivantes :

$$f(x) = (x^2 - 2x)e^x$$
; $g(x) = \frac{e^x}{x+1}$; $h(x) = \frac{e^x - 1}{2e^x + 1}$;

$$u(x) = \frac{e^x}{e^x - x}$$
; $v(x) = x^2 - 2(x-1)e^x$; $w(x) = xe^{2x-3}$

Exercice 4

Déterminer le domaine D_f de définition de la fonction f , dans les cas suivants, et calculer ses limites aux bornes de D_f :

$$a) f(x) = \frac{e^x - 1}{2x}$$

$$b) \ f(x) = 2xe^{-x}$$

c)
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$

a)
$$f(x) = \frac{e^x - 1}{2x}$$
 b) $f(x) = 2xe^{-x}$ c) $f(x) = \frac{e^x - 1}{2e^x + 1}$ d) $f(x) = x + 2 + xe^x$

Exercice 5

1/ Résoudre dans \mathbb{R} , l'inéquation: $t^2 + t - 6 < 0$

2/ Résoudre dans \mathbb{R} , l'équation $(\ln x)^2 + \ln x - 6 = 0$ et l'inéquation : $(\ln x)^2 + \ln x - 6 > 0$

3/ Résoudre dans \mathbb{R} , les inéquation : $e^{2x} + e^x - 6 \le 0$ et $e^{x+1} + e^{\frac{x+1}{2}} - 6 > 0$.

On considère la fonction f définie sur \mathbb{R} par : $f(x) = (xe^x - 1)e^x$ et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité graphique :2cm)

1/ Calculer $\lim_{x \to -\infty} f(x)$ et donner une interprétation graphique à ce résultat.

2/ Calculer $\lim_{x\to 0} f(x)$ et $\lim_{x\to 0} \frac{f(x)}{x}$ puis interpréter graphiquement ces résultats

3/ a/ Montrer que : $\forall x \in \mathbb{R}$; $f'(x) = e^x (e^x - 1 + 2xe^x)$

b/ Vérifier que f'(0) = 0 et donner une interprétation graphique de ce résultat

c/Montrer que: $\forall x \in [0; +\infty[; e^x - 1 \ge 0 \text{ et } \forall x \in] -\infty; 0]; e^x - 1 \le 0$

d/ Dresser le tableau de variation de f sur $\mathbb R$

4/ Montrer que l'équation f(x) = 0 admet une unique solution α dans \mathbb{R} et que $\frac{1}{2} < \alpha < 1$.

5/ Construire la courbe $\left(\mathcal{C}_{f}\right)$.On admettra que la courbe a un point d'inflexion dont le calcul n'est pas demandé.

Exercice 7

Calculer les limites suivantes :

https://www.dimamath.com

$$* \lim_{\substack{x \to 0 \\ x > 0}} e^{\frac{\ln x}{x}}$$

$$* \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln\left(1 + \sqrt{x}\right)}{1 - \sqrt{1 + x}}$$

$$* \lim_{x \to +\infty} \frac{e^x - \ln x}{e^x + \ln x}$$

Exercice 8

On considère la fonction f définie sur \mathbb{R} par : $f(x) = (1-x^2)e^{-x}$

On note par $\left(C_f\right)$ sa courbe représentative dans un repère orthonormé $\left(O;\vec{i},\ \vec{j}\right)$. L'unité graphique 2cm.

1/ a/ Justifier que : $\lim_{x \to +\infty} f(x) = 0$

b/ Donner une interprétation graphique de ce résultat.

2/ a/ Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

b/ Donner une interprétation graphique de ces résultats.

3/ a/ Montrer que : $(\forall x \in \mathbb{R})$; $f'(x) = (x^2 - 2x - 1)e^{-x}$

b/ Justifier que:

*
$$\forall x \in \left] -\infty; 1 - \sqrt{2} \left[\cup \right] 1 + \sqrt{2}; +\infty \left[, f'(x) > 0 \right]$$

*
$$\forall x \in \left[1 - \sqrt{2}; 1 + \sqrt{2}\right], f'(x) < 0$$

c/ Dresser le tableau de variation de la fonction f

4/ Montrer que l'équation de la tangente (T) à la courbe (C_f) au point d'abscisse 0, est : y = -x + 1

5/ Construire la courbe (C_f) et la tangente (T). On prendra $f(1-\sqrt{2}) \approx 1$, 3 et $f(1+\sqrt{2}) \approx -0$, 4.