https://www.dimamath.com

Exercice 1

On pose :
$$(\forall (x; y) \in]-1; 1[\times]-1; 1[); x * y = \frac{x+y}{1+xy}$$

- 1/ Montrer que * est une loi de composition interne dans]-1;1[
- 2/ Montrer que la loi de composition interne * est associative dans]-1;1[
- 3/ Montrer que la loi * est commutative dans]-1;1[
- 4/ Montrer que la loi * admet un élément neutre e qu'il faut déterminer
- 5/ Montrer que tout élément x de]-1;1[admet un élément symétrique x^{-1} pour la loi * dans]-1;1[, que l'on déterminera

Exercice 2

On définit dans \mathbb{Z} la relation T par : $(\forall (x,y) \in \mathbb{Z}^2)$; x T y = x + y + 2

- 1/ Montrer que T est une loi de composition interne dans $\,\mathbb{Z}\,$
- 2/ Montrer que T est associative dans $\mathbb Z$
- 3/ Montrer que T est commutative dans $\,\mathbb{Z}\,$
- 4/ Montrer que T admet un élément neutre e dans ${\mathbb Z}$ qu'il faut déterminer
- 5/ Montrer que tout élément de $\mathbb Z$ admet un élément symétrique dans $\mathbb Z$ pour la loi $\mathsf T$,que l'on déterminera

Exercice 3

On pose:
$$(\forall (x;y) \in]0;1[\times]0;1[); x*y = \frac{xy}{xy + (1-x)(1-y)}$$

- 1/ Montrer que * est une loi de composition interne dans]0;1[
- 2/ Montrer que * est associative dans]0,1
- 3/ Montrer que * est commutative dans]0;1[
- 4/ Montrer que * admet un élément neutre e dans]0;1[que l'on déterminera
- 5/ Montrer que tout élément de]0;1[admet un élément symétrique pour * dans]0;1[, que l'on déterminera

Exercice 4

On pose:
$$(\forall (x,y) \in]1, +\infty[\times]1, +\infty[), x \perp y = \sqrt{x^2y^2 - x^2 - y^2 + 2}$$

Montrer que \perp est une loi de composition interne dans $]1;+\infty[$

Exercice 6

On pose:
$$\forall (x; y; z; t) \in \mathbb{R}^4$$
; $(x; y) \perp (z; t) = (x + z + xz; y + t)$

- 1/ Montrer que \perp est une loi de composition interne dans \mathbb{R}^2
- 2/ Montrer que la loi \perp est associative dans \mathbb{R}^2
- 3/ Montrer que la loi \perp est commutative dans \mathbb{R}^2
- 4/ Montrer que la loi \perp admet un élément neutre (e;e') dans \mathbb{R}^2 que l'on déterminera
- 5/ Déterminer l'ensemble des éléments ayant un symétrique dans $(\mathbb{R}^2;\bot)$.

Exercice 7

Soit (G,st) un ensemble muni d'une loi de composition interne associative st

Tel que:
$$\forall (x,y) \in G^2$$
; $x^2 * y = y$ et $y * x^2 = y$ (où $x^2 = x * x$)

1/ Montrer que (G,*) admet un élément neutre e

https://www.dimamath.com

2/ Montrer que $\forall x \in G$; x * x = e

3/ En déduire que tout élément x de G admet un symétrique dans (G,*)

Exercice 8

On munit un ensemble non vide E d'une loi de composition interne T telle que :

$$\forall (x,y) \in E^2$$
; $xT(xTy) = (yTx)Tx = y$

Montrer que la loi T est commutative

