Corrigé De L'épreuve De Mathématiques Session Normale 2025 **BIOF SM**

Par : S. EL JAAFARI

15/06/2025

Exercice 1_

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \frac{e^x}{e^{2x} + e}$ et soit Γ sa courbe représentative dans un repère orthogonal $(O; \vec{i}, \vec{j})$

Partie 1

1. a. Montrer que $(\forall x \in \mathbb{R})$; f(1-x) = f(x)Soit $x \in \mathbb{R}$, on a: $f(1-x) = \frac{e^{1-x}}{e^{2(1-x)} + e} = \frac{\frac{e^x}{e^x}}{e^{\frac{e^x}{e^2x}}} = \frac{e^x}{e^{2x} + e} = f(x)$. D'où $(\forall x \in \mathbb{R})$: f(1-x) = f(x)

b. Interpréter ce résultat graphiquement :

En posant $a = \frac{1}{2}$ on a : $(\forall x \in \mathbb{R})$; f(2a - x) = f(x), et comme f est définie sur \mathbb{R} , on a :

$$\begin{cases} (\forall x \in \mathbb{R}); \ f(2a-x) = f(1-x) = f(x), \\ (\forall x \in \mathbb{R}); \ 2a-x = 1-x \in \mathbb{R}. \end{cases}$$

Alors la courbe (Γ) admet un axe de symétrie d'équation $x = \frac{1}{2}$

c. Calculer $\lim_{x \to -\infty} f(x)$ puis en déduire $\lim_{x \to +\infty} f(x)$.

Puisque $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} (e^{2x} + e) = e$, alors $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{e^{2x} + e} = 0$.

En plus on a : $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(1 - x) = \lim_{t \to -\infty} f(t) = 0$. (il suffit de poser t = 1 - x). Donc $\lim_{x \to -\infty} f(x) = 0$ et $\lim_{x \to +\infty} f(x) = 0$.

d. Interpréter graphiquement les deux résultats obtenus.

Puisque $\lim_{x\to +\infty} f(x)=0$ et $\lim_{x\to -\infty} f(x)=0$, alors la courbe Γ admet une asymptote horizontale au voisinage de $+\infty$ et de $-\infty$ d'équation y = 0.

2. a. Montrer que $(\forall x \in \mathbb{R})$; $f'(x) = f(x) \frac{1 - e^{2x - 1}}{1 + e^{2x - 1}}$. Soit $x \in \mathbb{R}$, on a $f'(x) = \frac{(e^x)(e^{2x} + e) - (e^x)(2e^{2x})}{(e^{2x} + e)^2} = \frac{e^{3x} + e^{x + 1} - 2e^{3x}}{(e^{2x} + e)^2} = \frac{e^x}{(e^{2x} + e)^2} = \frac{e^x}{e^{2x} + e} \times \frac{e - e^{2x}}{e^{2x} + e} = f(x) \frac{1 - e^{2x - 1}}{1 + e^{2x - 1}}$. D'où $(\forall x \in \mathbb{R})$; $f'(x) = f(x) \frac{1 - e^{2x - 1}}{1 + e^{2x - 1}}$.

b. Donner les variations de la fonction f, puis en déduire que : $(\forall x \in \mathbb{R})$; $0 < f(x) < \frac{1}{2}$. On a : $(\forall x \in \mathbb{R})$: $e^x > 0$ et $e^{2x} + e > 0$. Donc : $(\forall x \in \mathbb{R})$: f(x) > 0. et puisque $(\forall x \in \mathbb{R})$, $1 + e^{2x-1} > 0$, alors le signe de f'(x) est le même que celui de $1 - e^{2x-1}$.

Comme on a:
$$\begin{cases} f'(x) = 0 \Leftrightarrow 1 - e^{2x-1} = 0 \Leftrightarrow x = \frac{1}{2}, \\ f'(x) > 0 \Leftrightarrow 1 - e^{2x-1} > 0 \Leftrightarrow x < \frac{1}{2}. \end{cases}$$
, alors la fonction f est croissante sur l'intervalle

 $]-\infty;+\frac{1}{2}]$ et elle est décroissante sur l'intervalle $[\frac{1}{2};+\infty[$.

On déduit alors, que la fonction f admet un maximum absolu atteint en $\frac{1}{2}$ qui est $f(\frac{1}{2}) = \frac{1}{2\sqrt{e}}$.

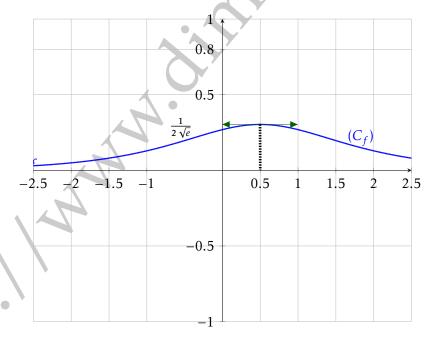
D'où $(\forall x \in \mathbb{R})$; $f(x) \le \frac{1}{2\sqrt{e}}$.

Or $(\forall x \in \mathbb{R})$; f(x) > 0. Alors $(\forall x \in \mathbb{R})$; $0 < f(x) \le \frac{1}{2\sqrt{e}} < \frac{1}{2}$ car $(\frac{1}{2\sqrt{e}} \cong 0, 30)$. D'où : $(\forall x \in \mathbb{R})$; $0 \le f(x) < \frac{1}{2}$.

Tableau de variation de f:

х	-∞	$\frac{1}{2}$	+∞
f'(x)	+	0	- 0
f(x)	0	$\frac{1}{2\sqrt{e}}$	

3. Représenter graphiquement la courbe (Γ) . $\frac{1}{2\sqrt{e}} \simeq 0,30$ et (On prendra $\|\vec{i}\| = 1cm$, $\|\vec{j}\| = 2cm$ et



En appliquant le changement de variables
$$\begin{cases} t = 1 - x, \\ dt = -dx, \\ x = 0 \Rightarrow t = 1, \\ x = \frac{1}{2} \Rightarrow t = \frac{1}{2} \end{cases}$$
, on obtient :

$$\int_0^{\frac{1}{2}} f(x) \, dx = \int_1^{\frac{1}{2}} -f(1-t) \, dt = \int_{\frac{1}{2}}^1 f(1-t) \, dt = \int_{\frac{1}{2}}^1 f(t) \, dt = \int_{\frac{1}{2}}^1 f(x) \, dx. \quad \text{D'où} \quad \int_0^{\frac{1}{2}} f(x) \, dx = \int_{\frac{1}{2}}^1 f(x) \, dx.$$

b. En déduire que : $\int_0^1 f(x) dx = 2 \int_0^{\frac{1}{2}} f(x) dx$.

On a : $\int_0^1 f(x) dx = \int_0^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^1 f(x) dx$, d'après la relation de chasles des intégrales.

Donc $\int_0^1 f(x) dx = \int_0^{\frac{1}{2}} f(x) dx + \int_0^{\frac{1}{2}} f(x) dx = 2 \int_0^{\frac{1}{2}} f(x) dx$. D'où $\int_0^1 f(x) dx = 2 \int_0^{\frac{1}{2}} f(x) dx$.

5. a. En effectuant le changement de variables $t=e^x$, Montrer que : $\int_0^{\frac{1}{2}} f(x) dx = \int_1^{\sqrt{e}} \frac{1}{t^2+e} dt$.

En appliquant le changement de variables suivant : $\begin{cases} t - c, \\ dt = e^x dx, \\ x = 0 \Rightarrow t = 1, \\ y = \frac{1}{2} \Rightarrow t = \sqrt{e}. \end{cases}$ on obtient :

$$\int_0^{\frac{1}{2}} f(x) \, dx = \int_1^{\sqrt{e}} \frac{t}{t^2 + e} \frac{dt}{t} = \int_1^{\sqrt{e}} \frac{1}{t^2 + e} \, dt.$$

b. Montrer que : $\int_0^{\frac{1}{2}} f(x) dx = \frac{1}{\sqrt{e}} \left(\arctan \sqrt{e} - \frac{\pi}{4} \right).$

ntrer que : $\int_0^\infty f(x) \, dx - \sqrt{e^{-x}}$ En appliquant le changement de variables : $\begin{cases} u = \frac{t}{\sqrt{e}}, \\ du = \frac{dt}{\sqrt{e}}, \\ t = 1 \Rightarrow u = \frac{1}{\sqrt{e}}, \\ t = \sqrt{e} \Rightarrow u = 1. \end{cases}$ on obtient :

c. En déduire l'aire, en cm^2 , du domaine plan délimité par (Γ) , les droites d'équations x = 0, x = 1 et y = 0.

On a : L'aire A =
$$\left(\int_0^{\frac{1}{2}} f(x) dx\right)$$
 u.a. = $\frac{1}{\sqrt{e}} \left(\arctan \sqrt{e} - \frac{\pi}{4}\right) u.a$, or $1u.a. = 1 \times 2cm^2 = 2cm^2$, alors l'aire A = $\frac{2}{\sqrt{e}} \left(\arctan \sqrt{e} - \frac{\pi}{4}\right) cm^2$

Partie 2 On considère la suite numérique (u_n) définie par : $\begin{cases} u_0 \in \left]0, \frac{1}{2} \right[\\ u_{n+1} = f(u_n) \; ; \; (\forall n \in \mathbb{N}). \end{cases}$

1. En utilisant le résultat I-1-a) montrer que $(\forall x \in \mathbb{R})$; $|f'(x)| \le f(x)$.

En effet on a: $(\forall x \in \mathbb{R})$;; $|1 - e^{2x-1}| \le 1 + e^{2x-1}$ car $|a + b| \le |a| + |b|$ Donc $(\forall x \in \mathbb{R})$; $\left|\frac{1 - e^{2x-1}}{1 + e^{2x-1}}\right| \le 1$.

Or $(\forall x \in \mathbb{R})$; f(x) > 0, alors : $f(x) \times \left| \frac{1 - e^{2x - 1}}{1 + e^{2x - 1}} \right| \le f(x)$.

D'où $(\forall x \in \mathbb{R}); |f'(x)| \le f(x).$

2. a. Montrer que $(\forall x \in]0; \frac{1}{2}[); 0 \le f'(x) < \frac{1}{2}$.

D'après le résultat de la question I-2-b) on a vu que la fonction f est strictement croissante sur l'intervalle $]-\infty; \frac{1}{2}]$. Par conséquent f est strictement croissante sur l'intervalle $]0; \frac{1}{2}[$.

D'où $(\forall x \in]0; \frac{1}{2}[); f'(x) \ge 0.$ On a montré aussi que $(\forall x \in \mathbb{R})$; $0 < f(x) < \frac{1}{2}$, donc $(\forall x \in]0; \frac{1}{2}[)$; $0 < f(x) < \frac{1}{2}$. Alors $(\forall x \in]0; \frac{1}{2}[)$; $0 \le f'(x) \le f(x) < \frac{1}{2}$. Par suite $(\forall x \in]0; \frac{1}{2}[)$; $0 \le f'(x) < \frac{1}{2}$.

- **b.** Montrer que la fonction $g: x \mapsto g(x) = f(x) x$ est strictement décroissante sur \mathbb{R} . En effet, on a : $(\forall x \in \mathbb{R})$; g'(x) = f'(x) - 1, et comme on a $(\forall x \in \mathbb{R})$; $0 \le f'(x) < \frac{1}{2}$, alors $(\forall x \in \mathbb{R})$; $g'(x) < -\frac{1}{2}$. D'où $(\forall x \in \mathbb{R})$; g'(x) < 0. Par conséquent la fonction g est strictement décroissante sur $\mathbb R$
- c. En déduire qu'il existe un unique réel $\alpha \in \left]0; \frac{1}{2}\right[$ tel que $f(\alpha) = \alpha$. En effet : la fonction g est continue et strictement décroissante sur l'intervalle $[0; \frac{1}{2}]$, et comme

 $g(0) = \frac{1}{1+e}$ et $g(\frac{1}{2}) = \frac{1-\sqrt{e}}{2\sqrt{e}}$ et $g(0) \times g(\frac{1}{2}) < 0$, alors d'après le théorème de la bijection (ou le corollaire du TVI) il existe un unique α de l'intervalle 0; $\frac{1}{2}$ tel que : $g(\alpha) = 0$. Par conséquent il existe un unique réel $\alpha \in \left[0; \frac{1}{2}\right[$ tel que, $f(\alpha) = \alpha$.

3. a. Montrer que $(\forall n \in \mathbb{N})$; $0 < u_n < \frac{1}{2}$.

Raisonnons par récurrence.

Initialisation : Pour n = 0 On a : $u_0 \in \left]0; \frac{1}{2}\right[$ par construction de la suite. Donc $0 < u_0 < \frac{1}{2}$. Hérédité : Soit $n \in \mathbb{N}$, supposons que $0 < u_n < \frac{1}{2}$ et montrons que $0 < u_{n+1} < \frac{1}{2}$. Démonstration : On a f est strictement croissante sur l'intervalle $\left[0;\frac{1}{2}\right]$ et $0 < u_n < \frac{1}{2}$ $f(0) < f(u_n) < f(\frac{1}{2})$ donc $0 < \frac{1}{1+e} < u_{n+1} < \frac{1}{2\sqrt{e}} < \frac{1}{2}$. D'où $0 < u_{n+1} < \frac{1}{2}$. d'après le principe de la récurrence on a : $(\forall n \in \mathbb{N})$; $0 < u_n < \frac{1}{2}$.

b. Montrer que $(\forall n \in \mathbb{N})$; $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$. Soient x et y deux nombres de l'intervalle $0; \frac{1}{2}$ tels que $x \neq y$.

Puisque f est continue et dérivable sur $\mathbb R$, alors $\begin{cases} f & \text{est continue sur l'intervalle } [x;y] \\ f & \text{est dérivablee sur l'intervalle }]x;y[\\ (\forall t \in]x;y[\,;\big|f'(t)\big| \leq \frac{1}{2} \end{cases}$

D'après le théorème des inégalités des accroissements finis on a : $|f(x) - f(y)| \le \frac{1}{2}|x - y|$. Or $(\forall n \in \mathbb{N})$; $u_n \in]0; \frac{1}{2}[$ et $\alpha \in]0; \frac{1}{2}[$, donc $(\forall n \in \mathbb{N})$; $|f(u_n) - f(\alpha)| \le \frac{1}{2}|u_n - \alpha|$. Et puisque $f(\alpha) = \alpha$ et $u_{n+1} = f(u_n)$ alors : $(\forall n \in \mathbb{N})$; $|u_{n+1} - \alpha| \le \frac{1}{2}|u_n - \alpha|$.

c. Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $|u_n - \alpha| \le (\frac{1}{2})^{n+1}$. Initialisation : Pour n = 0, on a $0 < \alpha < \frac{1}{2}$, donc $-\frac{1}{2} < -\alpha < 0$, et comme $0 < u_0 < \frac{1}{2}$, alors $-\frac{1}{2} < u_0 - \alpha < \frac{1}{2}$. Donc, $|u_0 - \alpha| < \frac{1}{2}$.

Hérédité : Soit $n \in \mathbb{N}$, Supposons que $\left|u_n - \alpha\right| \leq \left(\frac{1}{2}\right)^{n+1}$ et montrons que : $\left|u_{n+1} - \alpha\right| \leq \left(\frac{1}{2}\right)^{n+2}$

Démonstration : D'après (HR) on a $\left|u_n - \alpha\right| \le \left(\frac{1}{2}\right)^{n+1}$. et d'après la question II-3-b) on a $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|. \text{ alors : } |u_{n+1} - \alpha| \le \frac{1}{2} (\frac{1}{2})^{n+1}. \text{ D'où } |u_{n+1} - \alpha| \le \left(\frac{1}{2}\right)^{n+2}.$ Alors : $(\forall n \in \mathbb{N})$; $|u_n - \alpha| \le \left(\frac{1}{2}\right)^{n+1}.$

d. En déduire que la suite (u_n) converge vers α .

En posant $(\forall n \in \mathbb{N}); v_n = \left(\frac{1}{2}\right)^{n+1}$, on a: $(\forall n \in \mathbb{N}); |u_n - \alpha| \le v_n$ et comme $\lim_{n \to +\infty} v_n = 0$, alors la suite (u_n) est convergente et $\lim_{n\to+\infty} u_n = \alpha$.

Partie 3

Soit $(S_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par :

$$(\forall n \in \mathbb{N}^*)$$
, $S_n = \frac{1}{n(n+1)} \sum_{k=1}^n \frac{k}{e^{\frac{k}{n}} + e^{\frac{n-k}{n}}}$

1. a. Vérifier que

$$(\forall n \in \mathbf{N}^*); S_n = \frac{1}{n+1} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n}).$$

Soit $n \in \mathbb{N}^*$, on a :

$$S_n = \frac{1}{n+1} \sum_{k=1}^n \frac{\frac{k}{n}}{e^{\frac{k}{n}} + e^{1-\frac{k}{n}}}$$
$$= \frac{1}{n+1} \sum_{k=1}^n \frac{\frac{k}{n} \cdot e^{\frac{k}{n}}}{e^{2\frac{k}{n}} + e}$$
$$= \frac{1}{n+1} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n}).$$

D'où:

$$(\forall n \in \mathbf{N}); S_n = \frac{1}{n+1} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n})$$

b. Montrer que : $\int_0^1 x f(x) dx = \int_0^{\frac{1}{2}} f(x) dx$.

En appliquant le changement de variables : $\begin{cases} t = 1 - x, \\ dt = -dx, \\ x = 0 \Rightarrow t = 1, \\ x = 1 \Rightarrow t = 0. \end{cases}$ on obtient : $\begin{cases} x = 0 \Rightarrow t = 1, \\ x = 1 \Rightarrow t = 0. \end{cases}$ alors $\int_0^1 x f(x) \, dx = \int_1^0 (1 - t) f(1 - t) (-dt) = -\int_1^0 f(1 - t) \, dt + \int_1^0 t f(1 - t) \, dt \quad \text{Or } (\forall x \in \mathbb{R}); f(x) = f(1 - x),$ alors $\int_0^1 x f(x) \, dx = \int_0^1 f(t) \, dt - \int_0^1 t f(t) \, dt = \int_0^1 f(x) \, dx - \int_0^1 x f(x) \, dx.$

Donc $2\int_0^1 x f(x) dx = \int_0^1 f(x) dx$ et comme $\int_0^1 f(x) dx = 2\int_0^{\frac{1}{2}} f(x) dx$. (d'après le résultat de la question I-4-b)); alors $2\int_0^1 x f(x) dx = 2\int_0^{\frac{1}{2}} f(x) dx$ d'où: $\int_0^1 x f(x) dx = \int_0^{\frac{1}{2}} f(x) dx$.

2. Montrer que la suite $(S_n)_{n\in\mathbb{N}^+}$ est convergente et déterminer sa limite.

On a montré à la question III-1-a) que

$$(\forall n \in \mathbf{N}); S_n = \frac{1}{n+1} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n}),$$

donc

$$(\forall n \in \mathbf{N}); S_n = \frac{n}{n+1} \frac{1}{n} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n}).$$

On pose pour tout entier naturel non nul n,

$$T_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} f(\frac{k}{n})$$

et on considère la suite numérique $(a_n)_{n\in\mathbb{N}}$ définie par $:a_n=\frac{n}{n+1}$ et la fonction g définie sur \mathbb{R} par : g(x) = xf(x). Donc

$$(\forall n \in \mathbb{N}^*); S_n = a_n \times T_n$$

Il est évident que la suite $(a_n)_{n\in\mathbb{N}}$ est convergente vers 1, et puisque la fonction g est continue sur l'intervalle [0;1] et on a la suite $(T_n)_{n\in\mathbb{N}^*}$ définie pour tout entier naturel n par :

$$T_n = \frac{1}{n} \sum_{k=1}^n g(\frac{k}{n})$$

est une suite de Riemann donc elle est convergente vers $\int_0^1 g(x) dx = \int_0^1 x f(x) dx = \int_0^{\frac{1}{2}} f(x) dx$ donc $\lim_{n\to+\infty}T_n=\frac{1}{\sqrt{e}}(\arctan(\sqrt{e})-\frac{\pi}{4}).$

D'où la suite $(S_n)_{n \in \mathbb{N}^*}$ est convergente et on a

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} T_n = \frac{1}{\sqrt{e}} \left(\arctan(\sqrt{e}) - \frac{\pi}{4} \right)$$

5

Soit $\alpha \in [0; 2\pi[$. On considère dans \mathbb{C} l'équation (E_{α}) d'inconnue z :

$$(E_{\alpha}): z^2 - 2^{\alpha}e^{i\alpha}(1+2i)z + i2^{2\alpha+1}e^{i2\alpha}$$

Partie 1

- 1. a. Vérifier que $\Delta_{\alpha} = \left(2^{\alpha}e^{i\alpha}(1-2i)\right)^{2}$ En effet on a : $\Delta_{\alpha} = \left(-2^{\alpha}e^{i\alpha}(1+2i)\right)^{2} - 4i2^{2\alpha+1}e^{i2\alpha} = 2^{2\alpha}e^{i2\alpha}(1+4i-4-8i) = 2^{2\alpha}e^{i2\alpha}(1-2i)^{2}$ $= 2^{\alpha}e^{i\alpha}(1-2i))^{2}$. D'où : $\Delta_{\alpha} = \left(2^{\alpha}e^{i\alpha}(1-2i)\right)^{2}$.
 - b. En déduire les deux solutions a et b de l'équation (E_{α}) telles que |a| < |b|.

 Les deux solutions de l'équation (E_{α}) sont $z_1 = \frac{2^{\alpha}e^{i\alpha}(1+2i)-2^{\alpha}e^{i\alpha}(1-2i)}{2} = i2^{\alpha+1}e^{i\alpha}$ et $z_2 = \frac{2^{\alpha}e^{i\alpha}(1+2i)+2^{\alpha}e^{i\alpha}(1-2i)}{2} = 2^{\alpha}e^{i\alpha}$. Donc $|z_1| = 2^{\alpha+1}$ et $|z_2| = 2^{\alpha}$ et $2^{\alpha} < 2^{\alpha+1}$, alors $|z_2| < |z_1|$. D'où $a = 2^{\alpha}e^{i\alpha}$ et $b = i2^{\alpha+1}e^{i\alpha}$.
- 2. Vérifier que $\frac{b}{a}$ est un imaginaire pur On a : $\frac{b}{a} = \frac{i2^{\alpha+1}e^{i\alpha}}{2^{\alpha}e^{\alpha}} = 2i$. Donc $\frac{b}{a} = 2i$. Par conséquent $\frac{b}{a}$ est un imaginaire pur.

Partie 2

On pose: $\frac{b}{a} = \lambda i$ où $\lambda = Im(\frac{b}{a})$.

- 1. Dans un repère orthonormé direct on considère les points A(a), B(b) et H(h) où $\frac{1}{h} = \frac{1}{a} + \frac{1}{b}$.
 - a. Montrer que $\frac{h}{b-a} = -\left(\frac{\lambda}{\lambda^2+1}\right)i$; puis déduire que $(OH) \perp (AB)$.

On a:
$$\frac{b}{a} = \lambda i \iff b = \lambda ia$$
. Donc $\frac{h}{b-a} = \frac{\frac{ab}{a+b}}{b-a} = \frac{ab}{b^2-a^2} = \frac{\lambda ia^2}{a^2(-\lambda^2-1)} = \frac{\lambda i}{-\lambda^2-1}$.

Alors:
$$\frac{h}{b-a} = -\left(\frac{\lambda}{\lambda^2+1}\right)i$$
.

Comme
$$\frac{z_H - z_O}{z_B - z_A} = \frac{h}{b - a} = -\left(\frac{\lambda}{\lambda^2 + 1}\right)i$$
; donc $\frac{z_H - z_O}{z_B - z_A} \in i\mathbb{R}$. Par conséquent $(OH) \perp (AB)$

b. Montrer que $\frac{h-a}{b-a} = \frac{1}{\lambda^2+1}$ puis en déduire que les points H, A et B sont alignés .

On a
$$\frac{h-a}{b-a} = \frac{\frac{ab}{a+b}-a}{b-a} = \frac{\frac{b}{a+b}-1}{\frac{b}{a}-1} = \frac{\frac{\lambda i}{1+\lambda i}}{\frac{\lambda i}{\lambda i-1}} = \frac{1}{(1+\lambda i)(1-\lambda i)} = \frac{1}{\lambda^2+1}$$
. Donc

$$\frac{h-a}{b-a} = \frac{1}{\lambda^2 + 1}$$
et on a $\frac{z_H - z_A}{z_B - z_A} = \frac{h-a}{b-a} = \frac{1}{\lambda^2 + 1}$. Donc $\frac{z_H - z_A}{z_B - z_A} \in \mathbb{R}$. Par conséquent les points H, A et B sont alignés.

6

2. Soient I(m) le milieu du segment [OH] et J(n) le milieu du segment [HB].

a. Montrer que
$$\frac{n}{m-a} = -\lambda i$$

On a $m = \frac{h}{2}$ et $n = \frac{h+b}{2}$. Donc $\frac{n}{m-a} = \frac{\frac{h+b}{2}}{\frac{h}{2}-a} = \frac{1+\frac{b}{h}}{1-\frac{2a}{h}} = \frac{1+b(\frac{1}{a}+\frac{1}{b})}{1-2a(\frac{1}{a}+\frac{1}{b})} = \frac{2+\lambda i}{-1-\frac{2}{\lambda i}} = -\frac{\lambda i(2+\lambda i)}{2+\lambda i} = \frac{1}{2}$

b. En déduire que les droites (OJ) et (AI) sont perpendiculaires et que $OJ = |\lambda| \times AI$.

On a
$$\frac{z_J - z_O}{z_I - z_A} = \frac{n}{m - a} = -\lambda i$$
. Donc $\frac{z_J - z_O}{z_I - z_A} \in i\mathbb{R}$. Par suite $(OJ) \perp (AI)$
En plus $\frac{z_J - z_O}{z_I - z_A} = \frac{n}{m - a} = -\lambda i$ \Rightarrow $\left| \frac{z_J - z_O}{z_I - z_A} \right| = |-\lambda i|$ $\Rightarrow \frac{|z_J - z_O|}{|z_I - z_A|} = |\lambda|$, Donc $\frac{OJ}{AI} = |\lambda|$. ar conséquent $OJ = |\lambda| \times AI$.

c. Soit K le point d'intersection des droites (OJ) et (AI) . Montrer que les points K, I, H et J sont cocycliques.

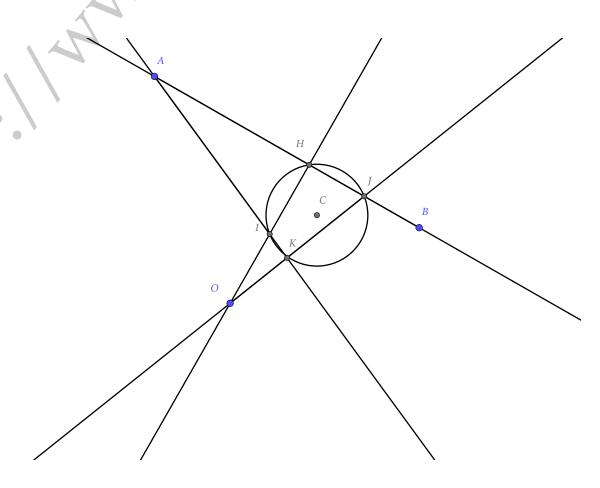
On a $(OH) \perp (AB)$ et les points H, A et B sont alignés, donc le triangle OHB est rectangle en H. En plus I est le milieu de [AB] et J est le milieu de [HB] donc IHJ est un triangle rectangle en H . Notons par (C) le cercle circonscrit au triangle IHJ; donc le triangle IHJ a pour diamètre [IJ] . d'autres parts on a $(OJ) \perp (AI)$ et K est le point d'intersection de (AI) avec (OJ), donc le triangle

IKJ est rectangle en K. Alors le cercle circonscrit au triangle IKJ a pour diamètre [IJ].

D'où les deux triangles IKJ et IHJ sont circonscrits par le cercle (C). Alors les points K, I, H et J appartiennent au cercle (C). D'où les points K, I, H et J sont cocycliques.

d. Montrer que les droites (IJ) et (OA) sont perpendiculaires.

Dans le triangle OAJ, on a $(OH) \perp (AJ)$ donc [OH] est la hauteur du triangle OAJ issue de OAJ. De même on a OAJ issue de OAJ is



Exercice 3

Soit p un nombre premier impair et a un entier premier avec p.

1. Montrer que $a^{\frac{p-1}{2}} \equiv 1 [p]$ ou $a^{\frac{p-1}{2}} \equiv -1 [p]$.

Puisque p est premier et a et p sont premiers entre eux, alors d'après le petit théorème de Fermat, on a: $a^{p-1} \equiv 1$ [p]. Et comme p est impair alors p-1 est pair, d'où $a^{p-1}-1=(a^{\frac{p-1}{2}}-1)(a^{\frac{p-1}{2}}+1)$. Par suite $a^{p-1}-1\equiv 0$ [p] \Leftrightarrow $(a^{\frac{p-1}{2}}-1)(a^{\frac{p-1}{2}}+1)\equiv 0$ [p] \Leftrightarrow $(a^{\frac{p-1}{2}}+1)\equiv 0$ [p] ou $a^{\frac{p-1}{2}}\equiv 1$ $[2\pi]$ ou $a^{\frac{p-1}{2}}\equiv -1$ $[2\pi]$). Par conséquent $a^{\frac{p-1}{2}}\equiv 1$ [p] ou $a^{\frac{p-1}{2}}\equiv -1$ [p].

- 2. Soit x_0 une solution de l'équation $ax^2 \equiv 1[p]$ dans \mathbb{Z} .
 - a. Montrer que $x_0^{p-1} \equiv 1[p]$.

 x_0 est une solution de l'équation $ax^2 \equiv 1[p] \Leftrightarrow ax_0^2 \equiv 1[p] \Leftrightarrow (\exists k \in \mathbb{Z}) : ax_0^2 = 1 + pk \Leftrightarrow (\exists k \in \mathbb{Z}) : x_0(ax_0) + p(-k) = 1 \Leftrightarrow (\exists (u,v) \in \mathbb{Z}^2) : x_0u + pv = 1$. (On pose $u = ax_0$ et v = -k). Alors, d'après le théorème de Bézout $p \land x_0 = 1$. Par suite d'après le petit théorème de Fermat, on a : $x_0^{p-1} \equiv 1[p]$.

b. En déduire que $a^{p-1} \equiv 1[p]$.

On a $ax_0^2 \equiv 1$ [p] $\Rightarrow (ax_0^2)^{\frac{p-1}{2}} \equiv 1$ [p] (Car la multiplication est compatible avec la congruence et $\frac{p-1}{2} \in \mathbb{N}$)

$$\Rightarrow \quad a^{\frac{p-1}{2}}x_0^{p-1}\equiv 1\left[p\right] \quad \text{or} \quad x_0^{p-1}\equiv 1\left[p\right], \quad \text{alors} \quad a^{\frac{p-1}{2}}\equiv 1\left[p\right]$$

- 3. Soit $n \in \mathbb{N}^*$.
 - a. Montrer que $p|(2^{2n+1}-1) \implies 2^{\frac{p-1}{2}} \equiv 1[p]$.

Supposons que $p|(2^{2n+1}-1)$ \Rightarrow $2^{2n+1}\equiv 1[p]$ \Rightarrow $2(2^{2n})\equiv 1[p]$ \Rightarrow $2(2^n)^2\equiv 1[p]$ \Rightarrow $(x_0=2^n)$ est une solution de l'équation $2x^2\equiv 1[p]$ \Rightarrow $2^{\frac{p-1}{2}}\equiv 1[p]$ d'après la question II-2-b. D'où $p|(2^{2n+1}-1)$ \Rightarrow $2^{\frac{p-1}{2}}\equiv 1[p]$.

b. En déduire que l'équation $11x + (2^{2n+1} - 1)y = 1$ admet au moins une solution dans \mathbb{Z}^2 .

Pour cela montrons que $11 \wedge (2^{2n+1} - 1) = 1$.

Supposons que $11 \land (2^{2n+1}-1) \neq 1$ et puisque 11 est premier alors $11 \mid (2^{2n+1}-1) \Rightarrow 2^{\frac{11-1}{2}} \equiv 1$ [11] (D'après la question II-3-a.). Or $2^{\frac{11-1}{2}} = 2^5 = 32$ et $32 \equiv -1$ [11] ce qui est absurde car $-1 \neq 1$ Donc 11 ne divise pas $(2^{2n+1}-1)$. Par suite $11 \land (2^{2n+1}-1) = 1$. D'où l'équation $11x + (2^{2n+1}-1)y = 1$ admet au moins une solution dans \mathbb{Z}^2 .

- **4.** On considère dans \mathbb{Z} l'équation $(F): x^2 + 5x + 2 \equiv 0$ [11].
 - a. Montrer que : (F) \Leftrightarrow $2(2x+5)^2 \equiv 0$ [11].

On a: $2(2x+5)^2 = 8x^2 + 40x + 50$ et $8 \times 7 \equiv 1 [11]$. $\Rightarrow (x^2 + 5x + 2) \equiv 0 [11]$ $\Rightarrow (x^2 + 5x + 2) \equiv 0 [11]$ $\Rightarrow (x^2 + 5x + 2) \equiv 0 [11]$ $\Rightarrow (x^2 + 40x + 16) \equiv 0 [11]$ $\Rightarrow (x^2 + 5)^2 - 34 \equiv 0 [11]$ $\Rightarrow (x^2 + 5)^2 \equiv 1 [11]$.

b. En déduire que l'équation (F) n'admet pas de solutions dans $\mathbb Z$.

En posant X=2x+5 donc l'équation $(F)\Leftrightarrow 2X^2\equiv 1\pmod{p}$. Raisonnons par l'absurde et supposons que l'équation (F) admet une solution $x_0\in \mathbb{Z}$, donc l'équation $2X^2\equiv 1$ [11] admet aussi une solution $X_0=2x_0+5$, d'après le résultat de la question 2 alors $2^{\frac{11-1}{2}}\equiv 1$ [11] donc $2^5-1\equiv 0$ [11] c'est à dire 31 est divisible par 11, ce qui est absurde. D'où l'équation (F) n'admet pas de solutions dans \mathbb{Z} .

Exercice 4

On rappelle que $(\mathcal{M}_3(\mathbb{R}), +, \times)$ est un anneau unitaire non commutatif de zéro la matrice $O = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

d'unité la matrice $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et que $(\mathcal{M}_3(\mathbb{R}), +, .)$ est un espace vectoriel réel.

Soient la matrice : $A = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix}$ et l'ensemble $\mathcal{E} = \{M(x) = I + xA \mid x \in \mathbb{R}\}$

1. a. Vérifier que $A^2 = -2A$.

Vérifier que
$$A^2 = -2A$$
.
On a $A^2 = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 2 & -2 & 4 \end{pmatrix} = -2\begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} = -2A$. Donc $A^2 = -2A$

b. En déduire que $\forall (x; y) \in \mathbb{R}^2$; $M(x) \times M(y) = M(x + y - 2xy)$.

Soit $(x; y) \in \mathbb{R}^2$ on a $M(x) \times M(y) = (I + xA)(I + yA) = I^2 + xI \times A + yA \times I + xyA^2 = I + (x + y)A + xy(-2A) = I + (x + y - 2xy)A$ (Car $I^2 = I$, $I \times A = A \times I = A$ et $A^2 = -2A$) D'où : $M(x) \times M(y) = M(x + y - 2xy)$.

2. a. Calculer $M(\frac{1}{2}) \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

$$M(\frac{1}{2}) \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \text{ D'où } M(\frac{1}{2}) \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = O.$$

b. En déduire que la matrice $M(\frac{1}{2})$ n'est pas inversible dans $(\mathcal{M}_3(\mathbb{R}),\times)$.

Raisonnons par l'absurde et Supposons que la matrice $M(\frac{1}{2})$ est inversible dans $(\mathcal{M}_3(\mathbb{R}), \times)$ donc

il existe une matrice N de $\mathcal{M}_3(\mathbb{R})$ telle que $N \times M(\frac{1}{2}) = I$, en multipliant par la matrice 0 0 0

on obtient $N \times M(\frac{1}{2}) \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ donc $N \times O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, d'où $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

ce qui est absurde. Donc la matrice $M(\frac{1}{2})$ n'est pas inversible dans $(\mathcal{M}_3(\mathbb{R}),\times)$.

3. Montrer que $\mathcal{E} - \{M(\frac{1}{2})\}$ est stable pour la multiplication dans $\mathcal{M}_3(\mathbb{R})$.

Soit $(x;y) \in \mathbb{R}^2$ tel que $x \neq \frac{1}{2}$ et $y \neq \frac{1}{2}$ donc $(x-\frac{1}{2})(y-\frac{1}{2}) \neq 0$; et puisque $(x-\frac{1}{2})(y-\frac{1}{2}) = -\frac{1}{2}(x+y-2xy-\frac{1}{2})$ alors $x+y-2xy-\frac{1}{2}\neq 0$, donc $x+y-2xy\neq \frac{1}{2}$. or $M(x)\times M(y)=M(x+y-2xy)$ alors $M(x)\times M(y)\neq M(\frac{1}{2})$. Donc $(\forall (x; y) \in \mathbb{R}^2)$ $M(x) \times M(y) \in \mathcal{E} - \{M(\frac{1}{2})\}$. D'où $\mathcal{E} - \{M(\frac{1}{2})\}$ est stable pour la multiplication dans $\mathcal{M}_3(\mathbb{R})$.

4. Montrer que $(\mathcal{E} - \{M(\frac{1}{2})\}, \times)$ est un groupe commutatif.

Puisque $\mathcal{E} - \{M(\frac{1}{2})\}$ est stable pour la multiplication dans $\mathcal{M}_3(\mathbb{R})$ et \times est asoociative dans $\mathcal{M}_3(\mathbb{R})$ alors × est associative dans $\mathcal{E} - \{M(\frac{1}{2}) \text{ et comme } I = M(0) = I + 0.A \text{ alors } I \in \mathcal{E} - \{M(\frac{1}{2})\}.$

Soit $(x; y) \in \mathbb{R}^2$ tel que $x \neq \frac{1}{2}$ et $y \neq \frac{1}{2}$, on a $M(x) \times M(y) = M(x + y - 2xy) = M(y + x - 2yx) = M(y) \times M(x)$.

Donc $\forall (x; y) \in (\mathbb{R} - \{\frac{1}{2}\})^2$ $M(x) \times M(y) = M(y) \times M(x)$ alors \times est commutative dans $\mathcal{E} - \{M(\frac{1}{2})\}$.

Soit $x \in \mathbb{R} - \{\frac{1}{2}\}$, déterminons y de $\mathbb{R} - \{\frac{1}{2}\}$ tel que $M(x) \times M(y) = I$.

 $M(x)\times M(y)=I \Leftrightarrow M(x+y-2xy)=M(0) \Leftrightarrow x+y-2xy=0 \Leftrightarrow y(2x-1)=x \Leftrightarrow y=\tfrac{x}{2x-1}.$

Montrons que $\frac{x}{2x-1} \in \mathbb{R} - \left\{\frac{1}{2}\right\}$. En effet on a $\frac{x}{2x-1} - \frac{1}{2} = \frac{1}{2(2x-1)}$ et $\frac{1}{2(2x-1)} \neq 0$ Donc $\frac{x}{2x-1} \neq \frac{1}{2}$ d'où $(\forall x \in (\mathbb{R} - \{\frac{1}{2}\})) (\exists y \in (\mathbb{R} - \{\frac{1}{2}\}))$ / $M(x) \times M(y) = I$ donc M(x) est inversible pour la multiplication des matrices dans $\mathcal{E} - \{M(\frac{1}{2})\}$.

Alors $(\mathcal{E} - \{M(\frac{1}{2})\}, \times)$ est un groupe commutatif.

5. On munit \mathcal{E} de la loi de composition interne T définie par : $\forall (x;y) \in \mathbb{R}^2$; $M(x)TM(y) = M(x+y-\frac{1}{2})$ On considère l'application φ définie de \mathbb{R} vers \mathcal{E} par : $(\forall x \in \mathbb{R})$; $\varphi(x) = M(\frac{1-x}{2})$

9

a. Montrer que φ est un homomorphisme de $(\mathbb{R}, +)$ vers (\mathcal{E}, T) et que $\varphi(\mathbb{R}) = \mathcal{E}$.

Soit $(x; y) \in \mathbb{R}^2$ montrons que $\varphi(x + y) = \varphi(x)T\varphi(y)$.

On a $\varphi(x+y) = M\left(\frac{1-(x+y)}{2}\right)$ et $\varphi(x)T\varphi(y) = M\left(\frac{1-x}{2}\right)TM\left(\frac{1-y}{2}\right) = M\left(\frac{1-x}{2} + \frac{1-y}{2} - \frac{1}{2}\right) = M\left(\frac{1-(x+y)}{2}\right)$.

Donc $(\forall (x;y) \in \mathbb{R}^2)$; $\varphi(x+y) = \varphi(x)T\varphi(y)$, par conséquent φ est un homomorphisme de $(\mathbb{R},+)$ vers (\mathcal{E},T) .

Montrons que $\varphi(\mathbb{R}) = \mathcal{E}$.

Puisque φ est une application de \mathbb{R} vers \mathcal{E} alors $\varphi(\mathbb{R}) \subset \mathcal{E}$, il suffit de montrer que $\mathcal{E} \subset \varphi(\mathbb{R})$.

Soit $M \in \mathcal{E}$, $\exists x \in \mathbb{R} : M = M(x)$ Déterminons un nombre réel y tel que $\varphi(y) = M$.

On a
$$\varphi(y) = M \Leftrightarrow M\left(\frac{1-y}{2}\right) = M(x) \Leftrightarrow \frac{1-y}{2} = x \Leftrightarrow y = 1-2x$$
.
Donc $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) : \varphi(y) = M(x)$. D'où $\mathcal{E} \subset \varphi(\mathbb{R})$.

Par conséquent $\varphi(\mathbb{R}) = \varphi(\mathbb{R})$.

b. En déduire que (\mathcal{E}, T) est un groupe commutatif.

Puisque $(\mathbb{R}, +)$ est un groupe commutatif et φ est un homomorphisme de $(\mathbb{R}, +)$ vers (\mathcal{E}, T) , alors $(\varphi(\mathbb{R}), T)$ est un groupe commutatif , or $\varphi(\mathbb{R}) = \mathcal{E}$ donc (\mathcal{E}, T) est un groupe commutatif.

6. Montrer que (\mathcal{E}, T, \times) est un corps commutatif.

On a montré que (\mathcal{E}, T) est un groupe commutatif (question 5.a.) et on a montré que $(\mathcal{E} - \{M(\frac{1}{2})\}, \times)$ est un groupe commutatif (question 4). Montrons que \times est distributive par rapport à T dans \mathcal{E} . Soient $(x, y, z) \in \mathbb{R}^3$ montrons que $M(x) \times (M(y)TM(z)) = (M(x) \times M(y))T(M(x) \times M(z))$.

En effet on a
$$M(x) \times (M(y)TM(z)) = M(x) \times M(y+z-\frac{1}{2}) = M(x+y+z-\frac{1}{2}-2x(y+z-\frac{1}{2}))$$

= $M(x+y+z-2xy-2xz+x) = M(2x+y+z-2xy-2xz-\frac{1}{2})$ et $(M(x)\times M(y))T(M(x)\times M(z))$
= $M(x+y-2xy)TM(x+z-2xz) = M(x+y-2xy+x+z-2xz-\frac{1}{2})$

$$= M(x + y + z - 2xy - 2xz + x) = M(2x + y + z - 2xy - 2xz - \frac{1}{2}) \text{ et } (M(x) \times M(y))T(M(x) \times M(z))$$

$$= M(x + y - 2xy)TM(x + z - 2xz) = M(x + y - 2xy + x + z - 2xz - \frac{1}{2})$$

d'où $M(x) \times (M(y)TM(z)) = (M(x) \times M(y))T(M(x) \times M(z))$. Donc \times est distributive par rapport à T dans \mathcal{E} .

$$(\mathcal{E},T)$$
 est un groupe commutatif

On a alors :
$$\begin{cases} (\mathcal{E},T) & \text{est un groupe commutatif} \\ (\mathcal{E} - \{M\left(\frac{1}{2}\right)\},\times) & \text{est un groupe commutatif} \\ \times & \text{est distributive par rapport à T dans} \mathcal{E} \end{cases}.$$

Donc (\mathcal{E}, T, \times) est un corps commutatif.