Concours d'entrée à FMP & FMD

Composante : Mathématiques

S. EL JAAFARI

N.B. Ce document contient toutes les questions posées au concours d'entrée à la première année des FMP ou des FMD aux sessions précédentes depuis 2020-2021

Les suites numériques

Q1) Soit (u_n) une suite réelle définie par : $(\forall n \in \mathbb{N})$; $u_n = \frac{(-1)^n}{n+1}$

A:-1; B:0; $C:-\infty$; $D:+\infty$; E: autre réponse.

Q2) Soit (u_n) une suite réelle définie par : $\begin{cases} u_{2n} = \frac{1}{2^n} \\ u_{2n+1} = \frac{1}{3^n} \end{cases}$

Pour tout entier naturel n on pose :

$$S_n = u_0 + u_1 + \dots + u_{2n} - \frac{1}{2^n} + \frac{1}{3^n} = \sum_{k=0}^n u_k - \frac{1}{2^n} + \frac{1}{3^n}$$
 alors:

- A : la suite (S_n) est strictement monotone croissante de limite $\frac{7}{4}$
- B : la suite (S_n) est strictement monotone décroissante de limite $\frac{7}{4}$
- C : la suite (S_n) est strictement monotone croissante de limite $\frac{7}{2}$ D : la suite (S_n) est strictement monotone croissante de limite $\frac{7}{2}$
- E : Aucune de ces réponses n'est vraies.
 - Q3) Soit $u_n = ln(1 + ne_{-n})$; $n \in \mathbb{N}$. Quelle est la bonne réponse?
- A : La suite (u_n) est bornée;

- D : La suite (u_n) est divergente
- Q4) Soit (w_n) la suite définie par : $w_0 = 1$ et $w_{n+1} = \frac{w_n + 3}{2w_n + 4}$ et on pose : $y_n = \frac{4}{w_n + 2}$. Vérifier la relation suivante:
- A: $y_{n+1} = \frac{23}{6+y_n}$ D: $y_{n+1} = \frac{6}{32+y_n}$
- B: $y_{n+1} = \frac{32}{6+y_n}$ $y_{n+1} = \frac{32}{20+y_n}$.

C: $y_{n+1} = \frac{-6}{32+y_n}$

Q5) $(U_n)_{n\geq 2}$ est la suite définie par : $U_n=\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{n^2}\right);\quad n\geq 2$ $\lim_{n\to +\infty}U_n=1$

A:1

B:0

 $C:+\infty$

 $D: \frac{1}{2}$

E : La limite n'existe pas.

Q6) $(U_n)_{n>1}$ et $(V_n)_{n>1}$ sont deux suites définies par : $U_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$; $ln(V_n) = U_n ln(2)$

A: $\lim_{n \to +\infty} U_n = 1$ et $\lim_{n \to +\infty} V_n = ln(2)$

B: $\lim_{n \to +\infty} U_n = \frac{1}{2}$ C: $\lim_{n \to +\infty} U_n = 2$ et $\lim_{n \to +\infty} V_n = ln(2)$ et $\lim_{n \to +\infty} V_n = 1$

 $D: \lim_{n \to +\infty} U_n = \frac{1}{2}$ $E: \lim_{n \to +\infty} U_n = 1$ et $\lim_{n \to +\infty} V_n = 2$ et $\lim_{n \to +\infty} V_n = 2$

et

 $\lim_{n \to +\infty} n - \sqrt{n^2 - n}$ est égale à : Q7)

 $A:-\infty$

B:0

 $C: \frac{1}{2}$

E : Autre réponse

Soit $x \in \mathbb{R}^*$ Si $\lim_{n \to +\infty} \left(1 + \frac{x}{7n}\right)^{29n} = 2022$ alors x est égal à :

 $A: \frac{29}{7}ln(2022)$

B: $2022ln(\frac{7}{29})$

 $C: 2022ln(\frac{29}{7})$

 $D: \frac{7}{29}ln(2022)$

E: Autre réponse

Q9) Si $(V_n)_{n\in\mathbb{N}^*}$ est une suite telle que : $(\forall n\in\mathbb{N}^*); V_1+V_2+...+V_n=2n^2+n$ alors V_8 est égal à :

A:31

B:53

C:54

D:62

E:64

Q10) On considère la suite (u_n) définie par $u_0 \in]0,1[$ et $(\forall n \in \mathbb{N}); u_{n+1} = f(u_n)$ où f est la fonction définie sur [0,1] par : $f(x) = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{1-x}}$ on a alors :

A: $\lim u_n = 0$

B: $\lim u_n =$

C: $\lim u_n = 1$

D: $\lim u_n = +\infty$

E : Autre réponse

Q11) (u_n) est la suite définie par : $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + u_n$. Alors la limite de la suite (u_n) si elle existe, est égale à :

A:1

 $B:+\infty$

C:0

D:-1

E : Autre réponse

 $A: \frac{1}{x-1}$

Q12) Si $x \in]0,1[$, alors $\lim_{n \to +\infty} (1-x+x^2-x^3+...+(-1)^n x^n)$ est égale à :

 $E: \frac{1}{1+x}$

 $B: \frac{1}{1-x}$

Q13) soit $q \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$ on pose $S_n = \sum_{k=0}^{\infty} q^k$. Si la suite $(S_n)_{n \in \mathbb{N}^*}$ est convergente et lim $S_n = 4$, alors q est égal à :

 $B: \frac{3}{4}$

 $C: \frac{4}{\epsilon}$

 $D : \frac{5}{6}$

 $E : \frac{6}{7}$

Q14) (u_n) est la suite définie par : $u_0 = 0$, $u_1 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt{\frac{u_{n+1}^2 + u_{n-1}^2}{2}}$, lim u_n est égale à :

A:0

 $B:+\infty$

C:1

 $D: \sqrt{2}$

 $E:\frac{\sqrt{2}}{2}$

Si $x \in]0,1[$ alors $\lim_{n \to +\infty} (1-x)^n (1+x)^n$ est égale à :

 $A:+\infty$

 $B:-\infty$

C:0

E:1

Q16) On a : $\lim_{n \to +\infty} \left(\frac{n-1}{n+1} \right)^{2n}$ est égale à : 0 B : e^{-4}

A:0

D : *e*

E:1

Q17) Si $(u_n)_{n\in\mathbb{N}^*}$ est une suite géométrique de premier terme $u_1=2$ et de raison $q=\frac{1}{3}$ alors le produit $u_1 \times u_2 \times u_3 \times ... \times u_n$. $(n \ge 1)$ est égal à :

D: $2^n.3^{\frac{n(n+1)}{2}}$

E: $\frac{1}{2^n \cdot 3^{\frac{n(n+1)}{2}}}$

Q18) Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $w_0 = \frac{1}{2}$ et $(\forall n \in \mathbb{N}), w_{n+1} = (w_n - 1)^2 + 1$.

Si $(w_n)_{n\in\mathbb{N}}$ est convergente alors $\lim_{n\to+\infty} w_n$ est égale à :

A:0

 $D: \frac{1}{2}$

E : -1

Q19) quad Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0 = 1$ et $(\forall n \in \mathbb{N})$, $u_{n+1} = \frac{2u_n}{\sqrt{1+u_n}}$.

On pose pour tout $n \in \mathbb{N}$: $v_n = \frac{u_n^2}{3-u_n^2}$.

 (v_n) est géométrique de raison :

B:2

 $C: \frac{1}{2}$

D:4

Q20) On considère la suite numérique $(U_n)_n$ telle que : $U_0=e^2-1$ et $(\forall n\in\mathbb{N}); U_{n+1}=(1+U_n)e^{-2}+1$ On pose $V_n = 3(1 + U_n)$

 $A:(U_n)$ est croissante

 $B:(V_n)$ est arithmétique

 $C: U_n = e^{2n+2} - 1$

 $D: \lim_{n \to +\infty} V_n = -1$

 $E: ln(V_0) + ln(V_1) + ... + ln(V_n) = (n+1)(2-n+ln(3))$

Q21) On pose:

$$S = \sum_{n \ge 1} \frac{1}{n(n+1)}$$
 et $S_n = \sum_{k=1}^{k=n} \frac{1}{k(k+1)}$

 $A: S_n = 1 + \frac{1}{n+1}$

B: S est divergente

C : S est convergente et sa somme est égale à 1 D : S est convergente et sa somme est égale à n

E : Toutes les réponses proposées sont fausses

Q22) Soit (U_n) la suite définie par : $U_n = \frac{(-1)^n}{n^2}$; $n \in \mathbb{N}^*$ La suite (U_n) est :

A: Monotone

B : Convergente

C : Négative

D : Décroissante et minorée

E : Croissante et majorée

Q23) Soient (u_n) et (v_n) deux suites définies pour tout $n \in \mathbb{N}^*$, par : $u_n = \frac{e^n}{n^n}$ et $v_n = \ln(u_n)$.

A : La suite (v_n) et la suite (u_n) ont la même limite.

B : La suite (v_n) est strictement croissante.

C : La suite (u_n) est strictement croissante.

D : La suite (u_n) est bornée.

E : La suite (u_n) admet une limite , et cette limite est non nulle.

Q24) On considère la suite (u_n) définie par : $u_0 = 1$ et pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{1}{3}u_n + n - 2$. On définit la suite (v_n) par : pour tout $n \in \mathbb{N}$; $v_n = -2u_n + 3n - \frac{21}{2}$.

A : Pour tout $n \ge 5$, $u_n \le n - 3$

B: Pour tout $n \ge 5$, $u_n \ge n - 3$

C : La limite de la suite (u_n) est finie

D: La suite (v_n) est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $\frac{25}{2}$

E : Pour tout $n \in \mathbb{N}$, $u_n = \frac{25}{4} \left(\frac{1}{3}\right)^n + \frac{3}{2}n + \frac{21}{4}$

Les nombres complexes

Q1) Soit $z = \frac{(1-i)^{10}}{(+i\sqrt{3})^4}$; quelle est la bonne réponse? |z| = 4 $B: |z| = \frac{1}{2}$ $C: argz \equiv \frac{\pi}{6}[2\pi]$

A : |z| = 4

 $C: argz \equiv \frac{\pi}{6}[2\pi]$

D: $argz \equiv \frac{3\pi}{2}[2\pi]$

 $argz \equiv \frac{\pi}{2}[2\pi]$

Q2) Soient z_1, z_2 et z_3 trois nombres complexes distincts ayant le même cube, c'est-à-dire $(z_1)^3 = (z_2)^3 = (z_3)^3$. Quelles sont les valeurs possibles de z_1, z_2 et z_3 ?

A:
$$z_1 = 1$$
; $z_2 = i$; $z_3 = -i$

B:
$$z_1 = 1$$
; $z_2 = \omega$; $z_3 = \omega^2$ où $\omega = e^{\frac{i2\pi}{3}}$

C:
$$z_1 = 1$$
; $z_2 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$; $z_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

D:
$$z_1 = 2$$
; $z_2 = -1$; $z_3 = 1$

E:
$$z_1 = 1; z_2 = -\omega; z_3 = -\omega^2$$
 où $\omega = e^{\frac{i2\pi}{3}}$

Q3)l'ensemble \mathbb{C} , si $z = \sqrt{5}e^{-i\frac{\pi}{8}}$, alors :

A:
$$z = \frac{\sqrt{10+5\sqrt{2}}}{2} - \frac{i\sqrt{10-5\sqrt{2}}}{2}$$

B:
$$z = \frac{\sqrt{2+\sqrt{2}}}{2} - \frac{i\sqrt{2-\sqrt{2}}}{2}$$

D:
$$z = \frac{2}{\sqrt{10+5\sqrt{2}}} + \frac{i\sqrt{10-5\sqrt{2}}}{2}$$

D: $z = \frac{\sqrt{2+\sqrt{2}}}{2} + \frac{i\sqrt{2-\sqrt{2}}}{2}$

D:
$$z = \frac{\sqrt{2+\sqrt{2}}}{2} + \frac{i\sqrt{2-\sqrt{2}}}{2}$$

$$E: z = \frac{\sqrt{10+5\sqrt{2}}}{2} - \frac{i\sqrt{10+5\sqrt{2}}}{2}$$

Q4) Le nombre complexe $z = \left(\frac{1}{\sqrt{2}}(1-i\sqrt{3})\right)^{10}$ est égal à :

$$A: z = -512$$

B:
$$z = \frac{\sqrt{3}}{2} - i\frac{1}{2}$$
 C: $z = 512$

$$C: z = 512$$

$$D: z = 251$$

$$\mathrm{E}: \tfrac{1}{2} - i \tfrac{\sqrt{3}}{2}$$

Pour $z \in \mathbb{C} - \{1\}$, l'ensemble des points M d'affixe z tels que $\frac{z+1}{z-1} \in i\mathbb{R}$ est : Q5)

A : La droite (Ox) privée du point (1,0)

B : La droite (Oy) privée du point (0,1)

C : Le cercle de centre O et de rayon 1

D : La droite (Ox)

E : Le cercle de centre O et de rayon 1 privé du point (1,0)

Q6) Dans \mathbb{C} , les solutions de l'équation $\frac{2z-1}{z+1} = z$ est :

A:
$$\{-1, \frac{1}{2}\}$$

B:
$$\{1 + i\sqrt{3}, 1 - i\sqrt{3}\}$$

C:
$$\{\frac{1+i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}\}$$

$$D: \{i\sqrt{3}, -i\sqrt{3}\}$$

E : Autre réponse

Q7) Si $z = e^{-i\theta} - e^{i\theta}$ avec $\theta \in]0, \pi[$ alors |z| est égal à :

- A:2
- $B: 2cos\theta$
- $C: 2cos \frac{\theta}{2}$
- $D: 2sin\theta$
- $E: 2sin\frac{\theta}{2}$

Q8) Dans l'ensemble $\mathbb C$ si $arg(iz)\equiv \frac{7\pi}{6}[2\pi]$ et $|z|=\sqrt{2}$ alors la partie imaginaire de z^3 est égale à :

- A:0
- B: $2\sqrt{2}$
- $C: \sqrt{2}$
- $D : -\sqrt{2}$
- $E : -2\sqrt{2}$

Q9) Le plan complexe est rapporté à un repère orthonormé direct.

Soit z un nombre complexe et Ω , M et M' les points d'affixes respectivement $-\frac{\sqrt{3}}{3}$, z et z' tel que : $z' = (1 + i\sqrt{3})z + i$, alors une mesure de l'angle $(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'})$ est :

 $A: \frac{2\pi}{3}[2\pi]$

 $B: \frac{\pi}{3}[2\pi]$

 $C:-\tfrac{2\pi}{3}[2\pi]$

 $D: -\frac{\pi}{3}[2\pi]$

 $E:\frac{\pi}{6}[2\pi]$

Q10) Dans l'ensemble \mathbb{C} , si $|z|-z=3-i\sqrt{3}$, alors |z| est égal à :

A:0

B: 2

 $C: 2\sqrt{3}$

D: $3\sqrt{2}$

 $E:7\sqrt{2}$

Q11) Le plan complexe est rapporté à un repère orthonormé direct.

Soient A et B les points d'affixes respectives -1 et i.

L'ensemble des points M d'affixe z tel que $\left|\frac{iz-1}{\bar{z}+i}\right| = 1$ est :

A : La médiatrice du segment [AB]

B : La droite (AB)

C : La droite (AB) privé du point B

D : Le cercle de diamètre [AB]

E : Le cercle de diamètre [AB] privé du point B

Q12) Le nombre complexe $\left(\frac{7-15i}{15+7i}\right)^{2021}$ est égal à :

A : *i*

B : -1

C: 7 - 15i

D:-i

E: 7 + 15i

Q13) Dans l'ensemble \mathbb{C} , si $|z|\bar{z}=15-20i$ alors |(1+i)z| est égal à :

 $A:\sqrt{2}$

B: $2\sqrt{2}$

C: $3\sqrt{2}$

D: $4\sqrt{2}$

 $E: 5\sqrt{2}$

Q14) Dans l'ensemble \mathbb{C} , si $z = 1 + i(1 + \sqrt{2})$, alors :

A: $|z| = 2\sqrt{2}\cos\frac{\pi}{8}$ et $argz \equiv \frac{3\pi}{8}[2\pi]$

B: $|z| = 2\sqrt{2}cos\frac{\pi}{8}$ et $argz \equiv \frac{\pi}{8}[2\pi]$

C: $|z| = 2\sqrt{2}\cos\frac{3\pi}{8}$ et $argz \equiv \frac{3\pi}{8}[2\pi]$

D: $|z| = 2\sqrt{2}cos\frac{3\pi}{8}$ et $argz \equiv \frac{\pi}{8}[2\pi]$

E: $|z| = 2\cos\frac{\pi}{8}$ et $\arg z \equiv \frac{3\pi}{8}[2\pi]$

Q15) Dans l'ensemble \mathbb{C} , si $|z_1|=|z_2|$ et $|z_1+z_2|=\sqrt{3}$, alors $|z_1+z_2|$ est égal à :

A:1

B:3

 $C:\sqrt{3}$

D:2

 $E: \sqrt{2}$

Q16) Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$ et $\alpha \in]0, \frac{\pi}{2}[$.

Soient z_1 et z_2 les deux solutions de l'équation d'inconnue z

$$(E_{\alpha}): z^2 - \sin(2\alpha)z + \sin^2(\alpha) = 0$$

La valeur de α pour laquelle les points O, $M(z_1)$ et $M(z_2)$ sont les sommets d'un triangle équilatéral est :

- $A:\frac{\pi}{3}$
- $B:\frac{\pi}{4}$
- $C: \frac{\pi}{\epsilon}$
- $D: \frac{\pi}{6}$
- $E:\frac{\pi}{8}$

Q17) On pose $A=1+cos(\frac{\pi}{5})+cos(\frac{2\pi}{5})+...+cos(\frac{9\pi}{5})$ et $B=sin(\frac{\pi}{5})+sin(\frac{2\pi}{5})+...+sin(\frac{9\pi}{5})$ On considère le nombre complexe z = A + iB. Le nombre complexe z est égal à :

- A : z = 0
- B : z = -2i
- $C: \frac{1}{2}$
- D: z = 2i
- E : Toutes les réponses proposées sont fausses

Q18) Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

On considère les points A et B d'affixes respectives $z_A=1$ et $z_B=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Soit C le symétrique de B par rapport à l'axe des abscisses.

- A : L'affixe z_C du point C est $z_C = \frac{1}{2} \frac{\sqrt{3}}{2}i$ B : Le triangle ABC est équilatéral
- C: Le module $|z_B z_A| = \sqrt{2}$
- D : Le triangle ABC est isocèle
- E: L'affixe z_C du point C est $z_C = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Q19) Si z est le nombre complexe de module $\sqrt{2}$ et d'argument $\frac{\pi}{3}$ alors z^8 est égal à :

- A: $8 + i8 \sqrt{3}$
- B: $-8 + i8 \sqrt{3}$
- D: 8 $i8\sqrt{3}$
- E: $4 + i4\sqrt{3}$

Q20) Si θ est un nombre réel, alors $\cos^3 \theta$ est égal à :

- A: $\frac{1}{8}(\cos 3\theta + 3\cos \theta)$
- $B: \frac{1}{4}(\cos 3\theta + 3\cos \theta)$
- $C:\frac{1}{4}(\sin 3\theta + 3\sin \theta)$
- $D: \frac{1}{8}(3\cos\theta \cos 3\theta)$
- $E: \frac{1}{8}(\sin 3\theta + 3\sin \theta)$

Q21) Si z est un nombre complexe tel que $arg(z-1) \equiv \frac{2\pi}{3}[2\pi]$ $et(z+1) \equiv \frac{\pi}{3}[2\pi]$ alors z est égal à :

- $A:i\sqrt{3}$
- $B: 2i\sqrt{3}$
- $C: -i\sqrt{3} \qquad \qquad D: -2i\sqrt{3}$
- $E: 1 + i \sqrt{3}$

Q22) Si $z = 1 + e^{1\frac{\theta}{2}}$ où $\theta \in]-\pi, \pi[quadalors |z| est égal à :$

- A:2
- B: $2\cos\frac{\theta}{2}$ C: $2\cos\frac{\theta+\pi}{4}$
- $D: cos \frac{\theta + \pi}{4}$ $E: 2sin \frac{\theta}{4}$

Q23) Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v}).$ L'ensemble des points M d'affixe z tel que : $z + \frac{1}{z} \in \mathbb{R}$ est :

A : L'axe des réels privé du point O

B : Le cercle de centre O et de rayon 1

C : L'axe des réels privé des points A(-1) et B(1)

D : Le cercle de centre O et de rayon 1 privé des points A(-1) et B(1)

E : L'axe des réels privé du point O union Le cercle de centre O et de rayon 1

Q24

A : La partie réelle de $(1-i)^5$ est $\sqrt{2}$

B: La partie imaginaire de $(1+i)^{20}$ est 42

 $C: (1+i)^{20}$ est réel

D : L'équation $z^4-1=0$ possède une et une solution dans $\mathbb C$

E: L'équation $z^4 - 1 = 0$ possède trois solutions distinctes dans \mathbb{R} .

La géométrie dans l'espace

Q1) Soit dans l'espace muni d'un repère orthonormé direct $(0; \vec{i}, \vec{j}, \vec{k})$ les points A(0,3,1), B(-1,3,0) et C(0,5,0). La sphère (S) a pour équation : $x^2 + y^2 + z^2 - 4x - 5 = 0$. Quelles sont les coordonnées du point de tangence H du plan ABC et de la sphère (S)?

A: $H(2, 2, \sqrt{5})$

B: H(2,3,1)

C: H(2,2,1)

D: H(0,1,2)

E: H(0, -1, 2)

Q2) Soient (P) et (P') deux plans d'équations P: x-y-z+2=0; P': x+z-2=0 respectivement et

 (Δ) la droite telle que (Δ) :

 $A:(\Delta)\subset P$

 $B:(\Delta)\perp P$

 $C:(\Delta)\cap P=\varnothing$ $D:(\Delta)\cap P'=\varnothing$ $E:(\Delta)\perp P'$

Q3) Dans l'espace rapporté à un repère orthonormé, on considère les deux points A(1,2,3) et B(2,0,1). L'ensemble des points M(x,y,z) équidistants des points A et B est :

A : Le plan : x + y + z = 6

B : Le plan : 2x - 4y - 4z = -9

C : Le plan : 2x - 4y - 4z = 9

E : Autre réponse

Q4) Dans le repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points A(-1, 2, 0), B(3, 0, 4) et C(-2, 1, 2).

A: La surface du triangle ABC est $5\sqrt{2}$

B: La surface du triangle ABC est $5\sqrt{3}$

C : La longueur de la hauteur issue de A dans le triangle ABC est

D : La longueur de la hauteur issue de A dans le triangle ABC est

E : Les points A, B et C sont alignés

Q5) Dans un repère orthonormé, on considère le plan (P)d'équation x + 2y - z = 3 et le plan (P') d'équation 3x + 2y + z = 5. On pose z = t, parmi les propositions suivantes, quelle est la représentation paramétrique de la droite (Δ) intersection de(P) et (P')?

A:
$$(\Delta)$$
:
$$\begin{cases} x = 2 + t \\ y = \frac{1}{3} \quad (t \in \mathbb{R}) \\ z = 3t \end{cases}$$

$$A: (\Delta): \begin{cases} x=2+t \\ y=\frac{1}{3} \quad (t \in \mathbb{R}) \\ z=3t \end{cases} \qquad B: (\Delta): \begin{cases} x=1-t \\ y=1+t \quad (t \in \mathbb{R}) \\ z=t \end{cases}$$

C:
$$(\Delta)$$
:
$$\begin{cases} x = 2 - 3t \\ y = 2 - t \\ z = t \end{cases} (t \in \mathbb{R})$$

Dénombrement et Probabilité

Q1) On suppose que 2000 personnes ont envoyé un SMS dans le cadre d'un mini jeu télé qui consistait à répondre à une question à deux choix. La société qui gère ce jeu-SMS sélectionne 30 SMS au hasard parmi les 2000. On note Ω l'ensemble de tous les sous-ensembles de 30 SMS (distincts). Combien d'éléments contient-il?

 $A: A_{2000}^{30}$

 $B:C_{2000}^{30}$

 $D: \frac{2000!}{30!}$

E:2000

Q2) On considère maintenant que vous faites partie des personnes qui ont envoyés un SMS. Quelle est la probabilité que vous soyez sélectionnés parmi les 2000 participants?

A: 0.12

B: 0.03

C: 0.015

D: 0.02

E: 0.1

Q3) Soit une urne qui contient 5 boules bleues, 4 boules blanches, 3 boules noires. Toutes les boules sont indiscernables au toucher. On tire simultanément 3 boules au hasard de l'urne. On répète cette expérience n fois de suite $(n \ge 5)$ en remettant dans l'urne les boules tirées après chaque tirage. Quelle est la probabilité d'obtenir 3 boules de couleur 2 à 2 distinctes (n-1) fois exactement?

 $A: \frac{8 \times 3^n}{11^n}$

B: $\frac{8n \times 3^n}{11^n}$

C: $\frac{8n \times 3^{n-1}}{11^n}$ D: $\frac{8^n \times 3^{n-1}}{11^n}$ E: $\frac{8 \times 3^n}{11^{n-1}}$

Q4) Dans l'espace rapporté à un repère orthonormé, on considère le plan (P) d'équation 3x-2z+3=0. On dispose d'un dé régulier dont les faces sont numérotées de 1 à 6.

On lance le dé et on obtient ainsi de manière équiprobable un nombre a $(1 \le a \le 6)$. La probabilité que le point $A(a^2, 2a, 6a - 3)$ appartient au plan (P) est :

 $A : \frac{1}{6}$

 $B:\frac{1}{2}$

 $C: \frac{1}{2}$ $D: \frac{2}{3}$

E : Autre réponse.

Q5) Une urne contient 5 boules rouges, 3 boules noires et une boule blanche.

Les boules sont indiscernables au toucher. On tire 3 boules de l'urne simultanément.

Calculer les probabilités suivantes P_A et P_B des événements :[0.5em]

A : « Deux boules au moins sont rouges ».

B: « Deux boules au moins ayant la même couleur ».

Choisir les bonnes réponses parmi les valeurs données au tableau suivant :

1	5	16	50	23	26	1
	$\overline{28}$	$\overline{84}$	$\overline{84}$	$\overline{28}$	$\frac{1}{42}$	

Les fonctions numériques

Q1) On considère la fonction f définie par :

A:
$$f'(x) = 1 + \frac{2(\ln x) - (\ln x)^2}{x^2}$$

B:
$$f'(x) = 1 - \frac{2(\ln x) - (\ln x)^2}{x^2}$$

C:
$$f'(x) = -1 + \frac{2(\ln x) - (\ln x)^2}{x^2}$$

B:
$$f'(x) = 1 - \frac{2(\ln x) - (\ln x)^2}{x^2}$$

C: $f'(x) = -1 + \frac{2(\ln x) - (\ln x)^2}{x^2}$
D: $f'(x) = -1 - \frac{2(\ln x) - (\ln x)^2}{x^2}$

E:
$$f'(x) = 1 + \frac{2(\ln x) + (\ln x)^2}{x^2}$$

Q2) La fonction $f: x \mapsto f(x) = 2ln(\frac{e^x + 2}{\sqrt{1 + e^x}})$ admet une asymptote horizontale ou oblique lorsque x tend vers $-\infty$ ou $+\infty$. Quelle est l'équation de cette asymptote?0.3 cm

$$A: y = 2x$$

$$B: y = x$$

$$C : y = 0$$

$$D: y = -2ln2$$

$$E: y = -2x$$

Q3) On considère la fonction g définie par : $g(x) = \frac{x^2+1}{x+1}$; déterminer le point x_0 où la tangente à est parallèle à la droite d'équation y = x.

$$A: x_0 = 0$$

$$B: x_0 = -1$$

$$C: x_0 = 1$$

$$D: x_0 = 2$$

$$E: x_0 = \emptyset$$
 (Ensemble vide)

Q4) Soit $f(x) = (1 + \frac{1}{x})^x$. Quelle est la bonne réponse?

$$A:D_f=|0,+\infty|$$

$$B:D_f=\mathbb{R}^*$$

$$C: D_f =]-\infty, -1[\cup]0, +\infty[$$
 $D: D_f =]-1, 1[$ $E: D_f = [-1, 1]$

$$D \cdot D_c =] - 1 \ 1[$$

$$E: D_{\epsilon} = [-1, 1]$$

Q6) Soit $f(x) = x\sin(\pi x) - \ln(x) - 1$ définie sur [0, 1]. Quelle est la bonne réponse?

A : f est majorée

B: Il existe $c \in]0,1]$ tel que f(c) = 0

 $C: \lim_{x \to \infty} f(x) = -\infty$

D: f est croissante

 $E: \lim_{x \to 1^{-}} f(x) = -1$

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{\sqrt{x}}{\sqrt{x+2\sqrt{x}}}$. $\lim_{x\to 0^+} f(x)$ est égale à :

 $A:+\infty$

B:0

C:1

D: $\frac{1}{2}$ E: f n'admet pas de limite en 0^+

Soit g la fonction définie sur \mathbb{R}^{+*} par : $g(x) = \frac{(2x)^x}{(x)^{2x}}$, pour tout x > 0; $\lim_{x \to +\infty} g(x)$ est égale à :

 $A:+\infty$

B:1

C:2

D:0

E : f n'admet pas de limite en $+\infty$

Q9) f est une fonction réelle, sachant que f(1) = 3 et f'(1) = -3. La courbe de la fonction f admet au point (1,3) une tangente d'équation :

A: y = 3x - 2

B: y = 3x - 6

C: y = -3x + 6

E: y = -3x + 2

Q10) Soit f et g deux fonctions réelles telles que : f(x) = ln(x-1) et $g(x) = \sqrt{x+1}$. Le domaine de définition de $g \circ f$ est :

 $A : [-1, +\infty[$

B:]1, $+\infty$ [C: [1 + $\frac{1}{e}$, $+\infty$ [D:]e, $+\infty$ [E:] -e, $+\infty$ [

Q11) Soit $\begin{cases} f(x) = x + x^2 sin(\frac{1}{x}); & x \neq 0 \\ 0; & x = 0 \end{cases}$

A : f n'est pas dérivable en 0 B : f'(0) = 0

D: Pour $x \neq 0$, $f(x) = 1 + 2xsin(\frac{1}{x}) + cos(\frac{1}{x})$

E: f est dérivable en 0 et f'(0) = 2

Q12) Soit f une fonction numérique dérivable sur \mathbb{R} .

 $(\forall x \in \mathbb{R});$ $f(2x-1) = x^2 + 3x$ alors f(1) + f'(1) est égal à :

 $A : \frac{5}{2}$

B:4

 $C : \frac{9}{2}$

 $D: \frac{13}{2}$

E : Autre réponse

 $f(x) = \sum_{i=1}^{n} x^{k} = 1 + x + x^{2} + ... + x^{n}$ Q13) Soit f une fonction numérique définie sur ${\mathbb R}$ par :

et soit (C) sa courbe représentative dans un repère orthonormé. L'équation réduite de la tangente à (C) au point d'abscisse 1 est :

A: $y = \frac{n(n+1)}{2}x - \frac{(n-2)(n+1)}{2}$ B: $y = \frac{n(n-1)}{2}x - \frac{(n-2)(n+1)}{2}$ C: $y = \frac{n(n+1)}{2}x + \frac{(n-2)(n+1)}{2}$ D: $y = \frac{n(n-1)}{2}x - \frac{n^2-1}{2}$ E: $y = \frac{n(n+1)}{2}x + \frac{n^2-1}{2}$

Q14) $\lim_{x\to 0} \frac{\sqrt{\ln(e+x)}-1}{\sqrt{x+1}-1}$ est égale à :

A: $\frac{1}{2e}$

B: $\frac{1}{a}$

C:1

D : *e*

E:2e

Q15) Si $f(x) = \frac{1}{1-x}ln(1+\frac{1}{x})$, alors f'(x) est égale à :

A: $\frac{1}{(1-x)^2}ln(1+\frac{1}{x}) + \frac{1}{x(1-x^2)}$ B: $\frac{1}{(1-x)^2}ln(1+\frac{1}{x}) - \frac{1}{x(1-x^2)}$ C: $\frac{1}{1-x^2}ln(1+\frac{1}{x}) - \frac{1}{x(1-x^2)}$ D: $\frac{1}{(1-x)^2}ln(1+\frac{1}{x}) - \frac{1}{x(1-x)}$ E: $\frac{1}{(1-x)^2}ln(1+\frac{1}{x}) + \frac{1}{(1-x^2)}$

Q16) Si f est la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{\sqrt{\ln(1+x^2)}}{x}$ alors:

 $A: \lim_{x \to 0} f(x) = 1$

 $B: \lim_{x \to 0} f(x) = 0$

 $C: \lim_{x \to 0} f(x) = -1$

 $D: \lim_{x \to 0} f(x) = \frac{1}{2}$

E : La fonction f n'admet pas de limite en 0

Q17) Si f(1) = 4 et $(\forall x \in \mathbb{R}_+^*)$; f'(x) = 2x + lnx alors f(e) est égal à :

 $A:e^2$

B : e + 4

 $C : e^2 + 4$

D:e

E:4

Q18) Soit $(a,b) \in \mathbb{R}^2$ la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} ax + b, \\ \frac{1}{x+1}, \end{cases}$ si $x \le 0$ si x > 0La fonction f est dérivable en 0 si, et seulement si :

 $A: a = 1 \ b = 1$

B: a = -1 b = 1

 $C: a = 2 \ b = 1$

D: a = -1 b = -1

 $E: a = -1 \ b = 0$

Q19) Dans \mathbb{R} , le nombre de solutions de l'équation $x^5 + x - 1 = 0$ est :

A:0

B:1

C:2

D:3

E:5

Q20) Si $f(x) = (x^2 - x)e^{\frac{1}{x}}$ alors f'(x) est égale à :

A: $(2x-1)e^{\frac{1}{x}}$

 $B: (1-\frac{1}{x})e^{\frac{1}{x}}$

 $C: (\frac{1}{x} - 1)e^{\frac{1}{x}}$ $D: (2x - 2 + \frac{1}{x})e^{\frac{1}{x}}$ $E: (2x - \frac{1}{x})e^{\frac{1}{x}}$

Q21 Le domaine de définition de la fonction f définie par : $f(x) = \frac{1}{x-1}ln(1+\frac{1}{x})$ est :

 $A:]-\infty,-1[\cup]0,+\infty[$

B: $]-1,1[\cup]1,+\infty[$

 $C:]-\infty, -1[\cup]1, +\infty[$

 $D:]-\infty, -1[\cup]0, 1[\cup]1, +\infty[$

E:]-1,1[

Q22) Si $(\forall x \in \mathbb{R})$, f(x) = (x-5)(x-4)(x-3)(x-2)(x-1) alors f'(1) est égale à :

A:24

B:1

C:0

D:5

E : -24

Q23) Soit $a \in]0, +\infty[$ et f la fonction définie par : $f(x) = 1 + x \ln \sqrt{1 + \frac{a}{x}}$, alors $\lim_{x \to +\infty} f(x)$ est égale à :

A:1

 $B: 1 + \frac{a}{2}$

C : 1 + a

 $D:+\infty$

E : *a*

Q24) Si $(\forall x \in \mathbb{R})$, $f(x) = x^3 + 3lnx + 1$ alors le nombre dérivé $(f^{-1})'(2)$ est égal à :

 $A: \frac{1}{3}$

 $B: \frac{1}{6}$

 $C: \frac{1}{5}$

 $D: \frac{1}{4}$

 $E: \frac{1}{2}$

Q25) On considère la fonction f définie par : $(\forall x \in \mathbb{R}), f(x) = e^{-\frac{x^2}{2}}$. Un encadrement de f'(x) sur l'intervalle [0,1] est :

A: $0 \le f'(x) \le \frac{1}{\sqrt{e}}$

 $B: \quad -\frac{1}{\sqrt{e}} \le f'(x) \le 0$

 $C: \quad -\frac{1}{2} \le f'(x) \le 0$

D: $0 \le f'(x) \le \sqrt{e}$

E: $-\frac{1}{\sqrt{e}} \le f'(x) \le -\frac{1}{2}$

Q26) Soit $f(x) = \sqrt{x^3 + 2x^2 + 3} - ax\sqrt{x + b}$ avec a et b deux réels donnés. f admet une limite finie en $+\infty$ si et seulement si :

A: a > 0 et b > 0

B: a = 1 et b > 0

C: a = 1 et b = 1

D: a = 1 et b = 0

E: a > 0 et b = 0

Q27) Soit *f* la fonction numérique définie par : $f(x) = 2ln(x^2 - 2x + 2)$.

Le domaine de définition de f est $D_f = \mathbb{R}^+$

 $\lim_{x \to +\infty} f(x) = 0$ B:

 $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ $f''(x) = \frac{x(4-x)}{((x-1)^2+1)}$

 $\lim_{x \to 0} f(x) = \ln 2$

Q28) si une fonction f est définie en a alors nécessairement :

A: f est continue en a

ln(f) est définie en a

 $\frac{1}{f}$ est définie en a

 $\frac{1}{af}$ est définie en aD:

Toutes les propositions sont fausses.

Q29)quad On considère la fonction f_n définie pour tout $x \in [0, +\infty[$ par : $f_n(x) = nxe^{-nx}$ avec n un entier naturel supérieur ou égal à 1 $n \ge 1$.

 $\lim_{x \to +\infty} f_n(x) = +\infty$ A:

 $\lim_{x \to +\infty} f_n(x) = -\infty$ B:

 $\lim_{x \to +\infty} f_n(x) = n$ C :

 $f_n'(x) = ne^{-nx}(nx - 1)$ D:

Toutes les propositions sont fausses. E:

Primitives et intégrales

Q1) Calculer l'intégrale suivante :

 $\frac{1}{2}ln|2 + sinx| + C$

ln|2 + sinx| + C

-ln|2 + sinx| + C

ln|2 + cosx| + CD:

 $\frac{1}{2}ln|2+cosx|+C$

Q2) L'intégrale $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin x \tan x} dx$ est égale à :

B: $2 - \sqrt{2}$

C: $\sqrt{2} - 2$

D: $\frac{\sqrt{2}}{2} - \frac{1}{2}$

E: $1 - \sqrt{2}$

Q3) L'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin 2x}{1+\sin^2 x} dx$ est égale à :

A: 0

B: ln(2)+1

C: ln(2)

D: 1

E: -ln(2).

Q4) Soit $a \in \mathbb{R}^*$. Si $\int_0^1 \frac{e^{ax}}{1+e^{ax}} \, dx = \frac{1}{a}$ alors a est égal à :

- A: ln(e-1)
- B: 2e 1
- C: ln(2e + 1)
- D: ln(2e-1)
- E:

Q5) Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2e^{3x} - 6$. La primitive F de la fonction f sur \mathbb{R} dont la courbe représentative coupe l'axe des ordonnées au point d'ordonnée 3 est définie par :

- A: $F(x) = \frac{2}{3}e^{3x} 6x \frac{2}{3}$ B: $F(x) = \frac{2}{3}e^{3x} 6x + \frac{7}{3}$ C: $F(x) = \frac{2}{3}e^{3x} 6x \frac{7}{3}$ D: $F(x) = \frac{2}{3}e^{3x} 6x + \frac{2}{3}$

- autre réponse

Q6) L'intégrale $\int_0^3 \frac{x^2}{\sqrt{x^3+6x+4}} dx$ est égale à :

- A: $\frac{1}{3}$
- B:

- Autre réponse

Q7) Si pour tout entier naturel n, $I_n = \int_1^e x(\ln x)^n dx$ alors $(\forall n \in \mathbb{N} : 2I_{n+1} + (n+1)I_n \text{ est égal à : }$

- A: *e*
- $B: e^2$

Q8) L'intégrale $\int_0^1 \frac{x}{1+e^{-x^2}} dx$ est égale à :

- - $\sqrt{\ln(\frac{1+e}{2})}$ B: $\ln\sqrt{1+e}$
- C: ln(1+e) D: $ln\sqrt{\frac{1+e}{2}}$
- $\sqrt{ln(1+e)}$

Q9) Si $\int_{1}^{2} f'(x)f''(x) dx = 8$ et f'(2) - f'(1) = 2, alors f'(2) + f'(1) est égal à :

A : 4

D:10

E: 12

Q10) L'intégrale $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x}{\sin x + \cos x} dx \quad \text{est égale à :}$

- E: $\frac{\pi}{12}$

Q11) Soient $(a,b) \in \mathbb{R}^2$ et f la fonction définie sur \mathbb{R} par : $f(x) = 3x^2 + 2ax + b$. Si $\int_{-1}^{1} f(x) dx < 2$, alors le nombre de solutions dans \mathbb{R} de l'équation f(x) = 0 est :

- A:

C :

- D: 3
- E:

Q12) Soit f la fonction définie par : $f(x) = \frac{2lnx}{x(1+(lnx)^2)}$. La primitive de f sur $]0,+\infty[$ qui s'annule en 1 est :

A: $x \mapsto ln((lnx)^2 + 1)$

B: $x \mapsto (lnx)^2$

 $C: x \mapsto 2ln\Big(\big(lnx\big)^2 + 1\Big)$

Q13) L'intégrale $\int_0^1 \frac{2t+3}{t+2} dt$ est égale à :

A: $ln\frac{3}{2}$

B: $2 + ln \frac{3}{2}$

C: $2 - ln^{\frac{2}{3}}$

D:

 $ln^{\frac{2}{3}}$

Q14) L'intégrale $\int_0^{\frac{\pi}{2}} sinxe^x dx$ est égale à :

B: $\frac{e+e^{\frac{\pi}{2}}}{2}$ C: $\frac{1-e^{\frac{\pi}{2}}}{2}$

D: $1 + e^{\frac{\pi}{2}}$

E: $1 - e^{\frac{\pi}{2}}$

Equations Différentielles

Q1) Si f est une solution sur \mathbb{R} de l'équation différentielle y'' + 2y' + 4y = 0, alors la fonction g = 2f est une solution sur \mathbb{R} de l'équation différentielle :

A: y'' + 2y' + 4y = 0

B: y'' + y' + y = 0

C: y'' + 4y' + 4y = 0

D: 2y'' + 4y' + y = 0

E : Autre réponse

Divers

Q1) ABCD est un carré de côté 1.

On place les points E et F respectivement sur les côtés [AB] et [BC] tels que BE = CF = xLa valeur de *x* pour laquelle l'aire du triangle *EFD* est minimale est :

A: 0

B:

C: $\frac{1}{3}$

 $D: \frac{1}{2}$

E : Autre réponse

Q2) Soit ABC un triangle isocèle en A tel que AB = AC = 10. L'aire maximale du triangle ABC est :

A: $25\frac{\sqrt{2}}{2}$

B: 50 C: 100

D: 10

E: $5\sqrt{2}$