

المركز الوطني للامتحانات المدرسية وتقييم التعلمات

الامتحان الوطني الموحد للبكالوريا

2025

الاستدراكية

الدورة

الموضوع

Y**

LLLLLLLLLLLLLLLLLLLL-LLLLL

RS

24F

الرياضيات

شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

الصفحة		
	1	
5	<u> </u>	
kΥ	*	
)	

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2025 -الموضوع -

المملكة المفرية وزارة التربية الولمنية الولمنية المولية المول

LLLLLLLLLLLLLLLLL-LLLLL	RS - 24F
-------------------------	----------

4h	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)	الشعبة المسلك

CONSIGNES:

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte cinq exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- L'EXERCICE1 se rapporte à l'analyse(7.75 pts)
- L'EXERCICE2 se rapporte à l'analyse(2.25 pts)
- L'EXERCICE3 se rapporte aux nombres complexes......(3.5 pts)
- L'EXERCICE4 se rapporte à l'arithmétique(3 pts)
- L'EXERCICE5 se rapporte aux structures algébriques.....(3.5 pts)

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé 0.5

0.5

0.5

0.5

0.25

RS - 24F

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Ω

EXERCICE1: (7.75 points)

Partie I:

On considère la fonction f définie sur l'intervalle $I = [0; +\infty[$ par :

$$f(0) = 0$$
 et $f(x) = \frac{x^2 \ln x}{x^2 + 1}$ si $x \in]0; +\infty[$

Et soit (C) la courbe représentative de la fonction f dans un repère orthonormé (O, \vec{i}, \vec{j})

0.25 1-a) Etudier la continuité de f à droite en 0

0.25x2 b) Etudier la dérivabilité de f à droite en 0 puis interpréter graphiquement le résultat obtenu.

0.25x3 c) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.

2- Soit φ la fonction définie sur $]0; +\infty[$ par $:\varphi(x)=x^2+1+2\ln x$

a) Dresser le tableau de variations de φ

b) Montrer que l'équation $\varphi(x) = 0$ admet une solution unique β appartenant à l'intervalle $\left| \frac{1}{2}; \frac{1}{\sqrt{3}} \right|$ (On donne $\ln 2 \simeq 0.7$ et $\ln 3 \simeq 1.1$)

0.25 c) Montrer que : $f(\beta) = -\frac{\beta^2}{2}$

0.5 3-a) Montrer que f est dérivable sur $]0; +\infty[$ et que $\forall x \in]0; +\infty[$, $f'(x) = \frac{x\varphi(x)}{(x^2+1)^2}$

0.5 b) Donner le tableau de variations de f

0.25 c) Montrer que $\frac{1}{\beta}$ est l'unique solution de l'équation $f(x) = \frac{1}{2}$ sur $\beta; +\infty$

d) Montrer que la droite d'équation $y = \beta x - \frac{1}{2}$ est la tangente à la courbe (C) au point d'abscisse $\frac{1}{\beta}$

4- Représenter graphiquement la courbe (C) dans le repère (O, \vec{i}, \vec{j}) (On admet que la courbe (C) possède deux points d'inflexion)

Partie II:

On pose $J = \left| \sqrt{3}; 2 \right|$ et $\alpha = \frac{1}{\beta}$

Soit g la fonction définie sur]0;+ ∞ [par : $g(x) = \sqrt{e^{1+\frac{1}{x^2}}}$

0.25 1-a) Etudier les variations de g

b) Montrer que : $(\forall x \in J)$; $\sqrt{3} < g(x) < 2$ (On donne $\sqrt{3} \simeq 1.73$, $e^{\frac{2}{3}} \simeq 1.95$ et $e^{\frac{5}{8}} \simeq 1.87$)

0.25 2-a) En utilisant le résultat de la question I.3-c), montrer que : $g(\alpha) = \alpha$

RS - 24F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2025 - الموضوع

شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

0.5

b) Montrer que : $(\forall x \in J)$; $|g'(x)| \le \frac{2}{2\sqrt{2}}$

0.5

c) En déduire que : $(\forall x \in J)$; $|g(x) - \alpha| \le \frac{2}{3\sqrt{3}} |x - \alpha|$

3- On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par :

$$x_0 = \frac{7}{4}$$
 et pour tout $n \in \mathbb{N}$, $x_{n+1} = g(x_n)$

0.25

a) Montrer que : $(\forall n \in \mathbb{N})$; $x_n \in J$

0.5

b) Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $|x_n - \alpha| \le \left|\frac{2}{3\sqrt{3}}\right|^n |x_0 - \alpha|$

0.25

c) En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers α .

EXERCICE2: (2.25 points)

On considère la suite numérique $(u_n)_{n\geq 2}$ définie par : $(\forall n\geq 2)$ $u_n=\frac{1}{n}\sum_{n=1}^{n-1}\ln\left|\frac{k}{n}\right|$

1- Soit *n* un entier naturel supérieur ou égal à 2.

0.25

a) Montrer que pour tout entier $k \in \{1, 2, ..., n-1\}$ et pour tout réel $x \in \left| \frac{k}{n}; \frac{k+1}{n} \right|$, on a : $\ln \left(\frac{k}{n} \right) \le \ln(x) \le \ln \left(\frac{k+1}{n} \right)$

0.25

b) En déduire que : $\forall k \in \{1, 2, ..., n-1\}$; $\frac{1}{n} \ln\left(\frac{k}{n}\right) \leq \int_{k}^{\frac{k+1}{n}} \ln(x) dx \leq \frac{1}{n} \ln\left(\frac{k+1}{n}\right)$

0.5

2- a) Montrer que : $(\forall n \ge 2)$; $\frac{1}{n} \sum_{k=1}^{n-1} \ln \left(\frac{k}{n} \right) \le \int_{\frac{1}{n}}^{1} \ln(x) dx \le \frac{1}{n} \sum_{k=2}^{n} \ln \left(\frac{k}{n} \right)$

0.5

b) En déduire que : $(\forall n \ge 2)$; $u_n \le \int_{\frac{1}{n}}^{1} \ln(x) dx \le u_n - \frac{1}{n} \ln \left(\frac{1}{n} \right)$

0.5

c) Montrer que : $(\forall n \ge 2)$; $-1 + \frac{1}{n} \le u_n \le -1 + \frac{1}{n} - \frac{1}{n} \ln \left(\frac{1}{n} \right)$

0.25

d) Déterminer $\lim_{n\to+\infty} u_n$

EXERCICE3: (3.5 points)

Soit $\theta \in [0,\pi[$

Partie I :

On considère dans l'ensemble des nombres complexes \mathbb{C} l'équation (E_{θ}) d'inconnue z

$$(E_{\theta}): z^{2} + (1-i)e^{i\theta}z - ie^{i2\theta} = 0$$

()

RS - 24F

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

 Ω

- 1- a) Vérifier que : $(E_{\theta}) \Leftrightarrow (2z + (1-i)e^{i\theta})^2 = ((1+i)e^{i\theta})^2$
- 0.5
- b) En déduire les deux solutions z_1 et z_2 de l'équation (E_θ) avec $\text{Im}(z_1) \leq 0$
- 0.25
- 2- a) Montrer que : $\frac{z_1 + 1}{z_2 + i} = -\tan\left(\frac{\theta}{2}\right)$
- 0.25
- b) En déduire la forme exponentielle du nombre complexe : $\frac{z_1 + iz_2}{z_2 + i}$

Partie II:

Dans le plan complexe P muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, et C d'affixes respectives $a = e^{i\theta}$, $b = (1+i)e^{i\theta}$ et c = b - a

Soient m un nombre **réel** de]0;1[, R la rotation de centre O et d'angle $\frac{\pi}{2}$ et le point Q d'affixe $q=me^{i\theta}$

- 0.25
- 1- a) Déterminer l'affixe p du point P l'image du point Q par la rotation R
- 0.25
- b) Vérifier que : R(A) = C
- 0.5
- 2- Soit *H* le point d'affixe $h = \frac{m}{m-i} e^{i\theta}$ a) Montrer que : $\frac{p-a}{h} = \frac{m^2+1}{m}i$ et $\frac{h-a}{p-a} = \frac{1}{m^2+1}$
- 0.25
- b) En déduire que H est le projeté orthogonal du point O sur la droite (AP)
- 0.5
- c) Montrer que : $\frac{b-h}{q-h} = \frac{1}{m}i$
- 0.25
- d) En déduire que les droites (QH) et (HB) sont perpendiculaires.
- 0.25
- e) Montrer que les points A, Q, H et B sont cocycliques.

EXERCICE4: (3 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): $y = \frac{a}{b}x - \frac{c}{d}$ où a,b,c et d sont des entiers naturels non nuls vérifiant : $a \wedge b = c \wedge d = 1$

- 1- On suppose que l'équation (E) admet une solution (x_0, y_0)
- 0.5
- a) Montrer que : d divise bcb) En déduire que : d divise b
- 0.5
- 2- On suppose que d divise b et on pose : b = nd où n est un entier naturel non nul.
- 0.5
- a) Montrer que qu'il existe $(u,v) \in \mathbb{N} \times \mathbb{N}$ tel que : dnu av = 1
- 0.75
- b) En déduire que l'ensemble des solutions de l'équation (E) est

$$S = \left\{ \left(-vc \, n + bk \, ; -uc \, n + ak \right) / k \in \mathbb{Z} \right\}$$

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

 Ω

0.75

3- Résoudre dans
$$\mathbb{Z} \times \mathbb{Z}$$
 l'équation (F) : $y = \frac{3}{2975}x - \frac{2}{119}$
(On donne : $2975 = 119 \times 25$)

EXERCICE5: (3.5 points)

On rappelle que $(M_3(\mathbb{R}),+,\times)$ est un anneau unitaire non commutatif de zéro la matrice

$$O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et d'unit\'e la matrice } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On munit l'ensemble $E = \{x + yi / x \in \mathbb{Z} \text{ et } y \in \mathbb{Z}\}$ par la loi de composition interne *

définie par :
$$\forall (x,y,x',y') \in \mathbb{Z}^4$$
; $(x+yi)*(x'+y'i) = (x+(-1)^y x')+(y+y')i$

Partie I:

0.25 | 1- a) Vérifier que : (1-i)*(3+2i) = -2+i

0.25 b) Montrer que la loi * n'est pas commutative dans E

0.5 2- Montrer que la loi * est associative dans E

0.25 | 3- Montrer que 0 est l'élément neutre pour la loi * dans E

0.25 | 4- a) Vérifier que $\forall (x,y) \in \mathbb{Z}^2$; $(x+yi)*((-1)^{(y+1)}x-yi)=0$

0.25 b) Montrer que (E,*) est un groupe non commutatif.

Partie II:

0.25

Soient les deux ensembles $F = \{x + 2yi / x \in \mathbb{Z} \text{ et } y \in \mathbb{Z} \}$ et

$$G = \left\{ M(x, y) = \begin{pmatrix} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} / x \in \mathbb{Z} \text{ et } y \in \mathbb{Z} \right\}$$

0.5 | 1- a) Montrer que F est un sous-groupe de (E,*)

b) Montrer que la loi * est commutative dans F

2- Soit φ l'application définie de F vers $M_3(\mathbb{R})$ par :

$$\forall (x,y) \in \mathbb{Z}^2; \ \varphi(x+2yi) = M(x,y)$$

0.5 a) Montrer que φ est un homomorphisme de (F,*) vers $(M_3(\mathbb{R}),\times)$

0.25 b) Montrer que $\varphi(F) = G$

0.25 c) En déduire que (G,\times) est un groupe commutatif.