Produit Scalaire Dans L'espace - 1ere Biof Scex

S. EL JAAFARI

Table des matières

I - Produit scalaire dans l'espace

- I-1- Définition et notation
- I-2- Orthogonalité de deux vecteurs
- I-3- Symétrie et bilinéarité du produit scalaire
- I-4- Norme d'un vecteur de l'espace

II- Etude analytique du produit scalaire

- II-1- Base orthonormale Repère orthonormal
- II-2- Expression analytique du produit scalaire
- II-3- L'ensemble des points M de l'espace tels que $\overrightarrow{u}.\overrightarrow{AM} = k$

III- Plan défini par un point et un vecteur normal

- III-1- Vecteur normal à un plan
- III-2- Equation cartésienne d'un plan défini par un point et un vecteur normal
- III-3- Parallélisme et orthogonalité de plans
- III-4- Distance d'un point à un plan de l'espace

IV- La sphère dans l'espace

- IV-1- Définition
- IV-2- Equation cartésienne d'une sphère
- IV-3- Représentation paramétrique d'une sphère
- IV-4- Ensemble des points M(x,y,z) tels que $x^2 + y^2 + z^2 2ax 2by 2cz + d = 0$
- IV-5- Ensemble des points M de l'espace tels que $\overrightarrow{MA}.\overrightarrow{MB} = 0$
- IV-6- Intersection d'une sphère et d'une droite
- IV-7- Intersection d'une sphère et d'un plan

I - Produit scalaire dans l'espace

I-1- Définition et notation

définition

Soient \vec{u} et \vec{v} deux vecteurs et A, B et C trois points de l'espace tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

- * Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$. Le produit scalaire des deux vecteurs \vec{u} et \vec{v} dans l'espace est le produit scalaire des deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} dans tout plan contenant les points A, B et C, on le note aussi $\vec{u}.\vec{v}$
- * Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ par convention on pose $\vec{u} \cdot \vec{v} = 0$

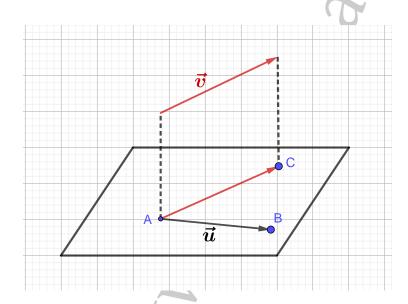


Figure 1 –

Remarques

Soit H le projeté orthogonal du point C sur la droite (AB).

- Si les vecteurs \overrightarrow{AH} et \overrightarrow{AB} ont des sens contraires, alors : $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH$.
- Si les vecteurs \overrightarrow{AH} et \overrightarrow{AB} sont **de même sens**, alors : $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AH$.

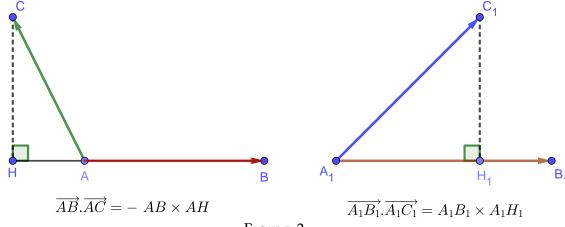


Figure 2 -

I-2- Orthogonalité de deux vecteurs

définition

On dit que deux vecteurs \vec{u} et \vec{v} sont **orthogonaux**, et on note $\vec{u} \perp \vec{v}$ si, et seulement si $\vec{u} \cdot \vec{v} = 0$

I-3- Symétrie et bilinéarité du produit scalaire

Proposition

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace V_3 et k un nombre réel . Alors :

- $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- $(k\vec{u}).\vec{v} = k(\vec{u}.\vec{v})$.
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

On dit que le produit scalaire est une opération symétrique et bilinéaire.

I-4- Norme d'un vecteur de l'espace

Définition

Soit \vec{u} un vecteur de l'espace.

- * Le produit scalaire $\vec{u}.\vec{u}$ s'appelle le carré scalaire du vecteur \vec{u} c'est un nombre réel positif qu'on note \vec{u}^2 .
- * Le nombre réel positif $\sqrt{\vec{u}^2}$ est appelé **la norme du vecteur** \vec{u} et on écrit : $\|\vec{u}\| = \sqrt{\vec{u}^2}$.

Remarques

En posant $\vec{u} = \overrightarrow{AB}$, on a : $\vec{u}^2 = \overrightarrow{AB}^2 = AB^2 = ||\vec{u}||^2$

Proposition

Soient \vec{u} et \vec{v} deux vecteurs de l'espace V_3 et k un nopmbre réel. Alors :

- $\star \quad \|\vec{u}\| = 0 \quad \Leftrightarrow \quad \vec{u} = \vec{0}$
- $\star \quad \|k\vec{u}\| = |k| \|\vec{u}\|$
- $\star \quad \vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times cos(\widehat{\vec{u};\vec{v}})$
- * $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ Inégalité triangulaire
- * $|\vec{u}.\vec{v}| \le ||\vec{u}|| \times ||\vec{v}||$ Inégalité de Cauchy-Schwarz
- * Identités remarquables :

$$\begin{cases} \|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \\ \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \\ \|\vec{u}\|^2 - \|\vec{v}\|^2 = (\vec{u} - \vec{v})(\vec{u} + \vec{v}) \end{cases}$$

3

II- Etude analytique du produit scalaire

II-1- Base orthonormale - Repère orthonormal

<u>Définition</u>

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

★ La base $(\vec{i}, \vec{j}, \vec{k})$ est **orthogonale** si, et seulement si $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$.

- ★ La base $(\vec{i}, \vec{j}, \vec{k})$ est **orthonormale** si, et seulement si $\begin{cases} \vec{i}.\vec{j} = \vec{i}.\vec{k} = \vec{j}.\vec{k} = 0 \\ ||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1 \end{cases}$
- ★ Le repère $(O; \vec{i}, \vec{j}, \vec{k})$ est **orthogonal** si, et seulement si la base $(\vec{i}, \vec{j}, \vec{k})$ est orthogonale
- ★ Le repère $(O; \vec{i}, \vec{j}, \vec{k})$ est **orthonormal** (**ou orthonormé**) si, et seulement si la base $(\vec{i}, \vec{j}, \vec{k})$ est orthonormale.

II-2- Expression analytique du produit scalaire

Proposition 1

Dans l'espace V_3 rapporté à une base orthonormale $(\vec{i}, \vec{j}, \vec{k})$ on considère les vecteurs $\vec{u}(x, y, z)$ et $\vec{v}(x', y', z')$. Alors :

- $\star \quad \vec{u}.\vec{v} = xx' + yy' + zz'.$
- $\star \quad \|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}.$

Proposition 2

Dans l'espace \mathcal{E} rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$. Alors :

et
$$B(x_B, y_B, z_B)$$
. Alors:
 $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$.

II-3- L'ensemble des points M de l'espace tels que $\vec{u}.\overrightarrow{AM} = k$

Proposition

L'espace \mathcal{E} est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit $\vec{u}(a,b,c)$ un vecteur non nul et A un point et k un nombre réel.

L'ensemble des point M(x,y,z) de l'espace \mathcal{E} tels que $\vec{u}.\overrightarrow{AM}=k$ est un plan dont une équation cartésienne est : ax+by+cz+d=0.

III- Plan défini par un point et un vecteur normal

III-1- Vecteur normal à un plan

Définition

Soit \vec{n} un vecteur de l'espace et (\mathcal{P}) un plan.

On dit que \vec{n} est un vecteur normal au plan (P) si, et seulement si toute droite de vecteur directeur \vec{n} est perpendiculaire à (P).

III-2- Equation cartésienne d'un plan défini par un point et un vecteur n

Proposition

Soient a, b, c et d quatre nombres réels tels que $(a, b, c) \neq (0, 0, 0)$.

- ★ Tout plan de vecteur normal $\vec{n}(a,b,c)$ a une équation cartésienne de la forme : ax + by + cz + d = 0
- \star Inversement, l'ensemble des points M(x,y,z) de l'espace tels que : ax + by + cz + d = 0 est un plan de vecteur normal $\vec{n}(a,b,c)$.

III-3- Parallélisme et orthogonalité dans l'espace

Proposition

Soient (\mathcal{P}) et (\mathcal{P}') deux plans de l'espace de vecteurs normaux respectifs \vec{n} et $\vec{n'}$ et soit \mathcal{D} une droite de l'espace de vectzeur directeur \vec{u} . Alors :

- \star $(\mathcal{P}) \parallel (\mathcal{P}') \Leftrightarrow \vec{n}$ et $\vec{n'}$ sont colinéaires.
- \star $(\mathcal{P}) \perp (\mathcal{P}') \Leftrightarrow \vec{n} \perp \vec{n'}.$
- \star $(\mathcal{D}) \parallel (\mathcal{P}) \iff \vec{u} \perp \vec{n}.$
- \star $(\mathcal{D}) \perp (\mathcal{P}) \Leftrightarrow \vec{u}$ et \vec{n} sont colinéaires.

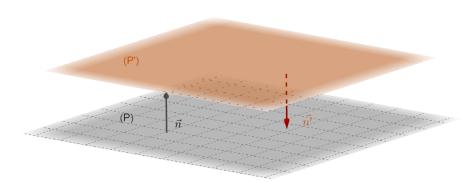


Figure $3 - (P) \parallel (P')$

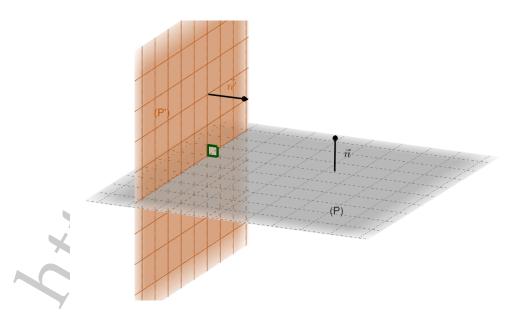


Figure $4 - (P) \perp (P')$

III-4- Distance d'un point à un plan de l'espace

Définition

Soit (P) un plan et A un point de l'espace.

La distance du point A au plan (P) notée d(A, (P)) est la distance AH où H est le projeté orthogonal de A sue (P) : d(A, (P)) = AH.

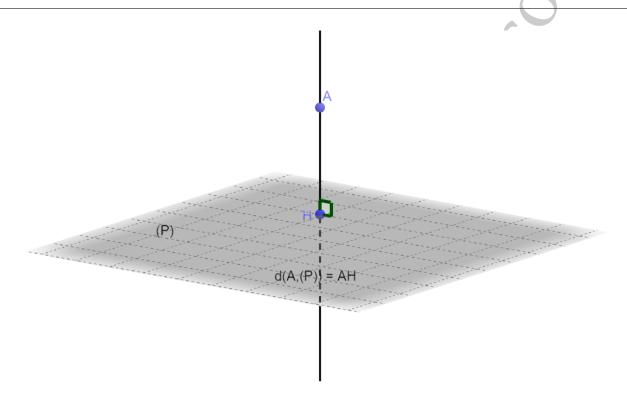


FIGURE 5 - d(A, (P)) = AH

Proposition

L'espace \mathcal{E} est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$. Soit $A(x_A, y_A, z_A)$ un point de l'espace et (P) un plan d'équation cartésienne ax + by + cz + d = 0. Alors :

$$d(A, (P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

IV- La sphère dans l'espace

IV-1- Définition

Définition

Soit Ω un point de l'espace et R un nombre réel positif.

La sphère de centre Ω et de rayon R est l'ensemble des points M de l'espace tels que $\Omega M = R$. On la note $S(\Omega, R)$.

En plus si A et B sont deux points de la sphère $S(\Omega, R)$, on dit que le segment AB est un diamètre de la sphère $S(\Omega, R)$ si le centre Ω est le milieu du segment AB.

IV-2- Equation cartésienne d'une sphère

Proposition

Dans l'espace \mathcal{E} rapporté à un repère orthonormé, on considère un point $\Omega(a,b,c)$ et R est un nombre réel positif.

Une équation cartésienne de la sphère $S(\Omega, R)$ est donnée par :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = 0$$

IV-3- Représentation paramétrique d'une sphère

Proposition

Soit S la sphère de centre un point $\Omega(a, b, c)$ et de rayon R.

•
$$M(x,y,z) \in \mathcal{S}$$
 \Leftrightarrow
$$\begin{cases} x = a + Rsin\varphi cos\theta \\ y = b + Rsin\varphi sin\theta \\ z = c + Rcos\varphi \end{cases}$$

• Le système précédent est appelé une représentation paramétrique de la sphère S.

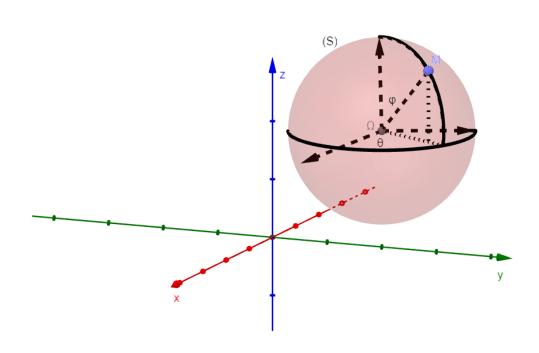


Figure 6 – $S(\Omega, R)$

IV-4- Ensemble des points M(x, y, z) de l'espace tels que $: x^2 + y^2 + z^2 - 1$

Proposition

L'espace \mathcal{E} est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit S l'ensemble des points M(x,y,z) de l'espace tels que : $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ où a, b, c et d sont des nombres réels.

- * Si $a^2 + b^2 + c^2 d > 0$, alors S est la sphère de centre le point $\Omega(a, b, c)$ et de rayon $R = \sqrt{a^2 + b^2 + c^2 d}$.
- * Si $a^2 + b^2 + c^2 d = 0$, alors $S = \{\Omega(a, b, c)\}$.
- * Si $a^2 + b^2 + c^2 d < 0$, alors $S = \emptyset$.

IV-5- Ensemble des points M de l'espace tels que $\overrightarrow{MA}.\overrightarrow{MB} = 0$

Proposition

Soient A et B deux points distincts de l'espace \mathcal{E} .

- ★ L'ensemble S des points M de l'espace tels que : $\overrightarrow{MA}.\overrightarrow{MB} = 0$ est la sphère de diamètre [AB].
- \star Une équation cartésienne de la sphère S est donnée par :

$$(x - x_A)(x - x_B) + (y - y_A)(y - y_B) + (z - z_A)(z - z_B) = 0$$

IV-6- Intersection d'une sphère et d'une droite

Proposition

Soit $S(\Omega, R)$ une sphère et (\mathcal{D}) une droite de l'espace \mathcal{E} . Soit H le projeté orthogonal de Ω sur (\mathcal{D}) et $d = d(\Omega, (\mathcal{D}))$.

- \star si d > R, alors $(\mathcal{D}) \cap \mathcal{S} = \emptyset$. On dit dans ce cas que la droite (\mathcal{D}) est à **l'extérieur** de la sphère \mathcal{S} .
- ★ Si d = R, alors $(\mathcal{D}) \cap \mathcal{S} = \{H\}$. On dit dans ce cas que la droite (\mathcal{D}) est **tangente** à la sphère \mathcal{S} au point H.
- ★ Si d < R, alors $(\mathcal{D}) \cap \mathcal{S} = \{A, B\}$. On dit dans ce cas que la droite (\mathcal{D}) **perce** la sphère \mathcal{S} aux deux points A et B.

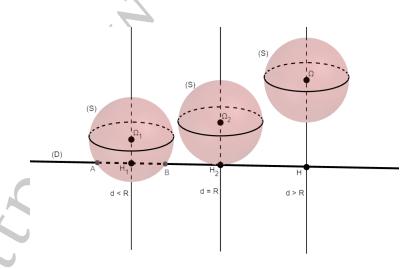


Figure $7 - (S) \cap (D)$

IV-7- Intersection d'une sphère et d'un plan

Proposition:

Soit $\mathcal{S}(\Omega, R)$ une sphère et (\mathcal{P}) un plan de l'espace \mathcal{E} .

Soit H le projeté orthogonal de Ω sur (\mathcal{P}) et $d = d(\Omega, (\mathcal{P}))$.

- \star si d > R, alors $(\mathcal{P}) \cap \mathcal{S} = \emptyset$. On dit dans ce cas que le plan (\mathcal{P}) est à l'extérieur de la sphère $\mathcal{S}.$
- \star Si d = R, alors $(\mathcal{P}) \cap \mathcal{S} = \{H\}$. On dit dans ce cas que le plan (\mathcal{P}) est **tangent** à la sphère \mathcal{S} au point H.
- * Si d < R, alors $(\mathcal{P}) \cap \mathcal{S} = \mathcal{C}$ où \mathcal{C} est le cercle de centre H et de rayon $r = \sqrt{R^2 d^2}$. On dit dans ce cas que le plan (\mathcal{P}) coupe la sphère \mathcal{S} selon le cercle $\mathcal{C}(H, \sqrt{R^2 - d^2})$.

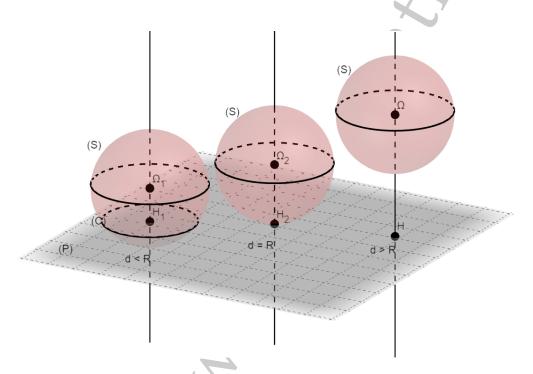


Figure $8 - (S) \cap (P)$

