1ere BIOF SM Cours: Etude analytique de l'espace

S. EL JAAFARI

Table des matières

- I Coordonnées d'un point dans repère
 - Coordonnées d'un vecteur dans une base
 - I.1. Base et repère de l'espace
 - I.2. Coordonnées d'un point dans un repère de l'espace ${\mathcal E}$
 - I.3. Coordonnées d'un vecteur dans une base de l'espace V_3
- II Condition de colinéarité de deux vecteurs
 - Condition de coplanarité de trois vecteurs
 - II.1. Condition de colinéarité de deux vecteurs
 - II.2. Condition de coplanarité de tois vecteurs
- III Etude analytique d'une droite de l'espace
 - III.1. Représentation paramétrique d'une droite
 - III.2. Equations cartésiennes d'une droite
- IV Etude analytique d'un plan de l'espace
 - IV.1. Représentation paramétrique d'un plan
 - IV.2. Equation cartésienne d'un plan
- V Positions relatives de droites et plans de l'espace
 - V.1. Positions relatives de deux droites
 - V.2. Positions relatives d'une droite et d'un plan
 - V.3. Positions relatives de deux plans

I - Coordonnées d'un point dans repère - Coordonnées d'un vecteur dans une base

I.1. Base et repère de l'espace

Définition:

Soient \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires de l'espace \mathcal{V}_3 et O un point de l'espace \mathcal{E} .

- ★ Le triplet $(\vec{i}, \vec{j}, \vec{k})$ est appelé une base de l'espace V_3 .
- * Le quadruplet $(O; \vec{i}, \vec{j}, \vec{k})$ est appelé un repère de l'espace \mathcal{E}

Remarque:

- ★ Quatre points non coplanaires de l'espace O, A, B et C déterminent un repère de l'espace.
- ★ $(O; \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ est un repère de de l'espace \mathcal{E} (par exemple)

I.2. Coordonnées d'un point dans un repère de l'espace

Théorème et définition:

Soit $(O; \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ un repère de l'espace \mathcal{E} .

- * Pour tout point M de l'espace \mathcal{E} il existe un triplet (x, y, z) de nombres réels tel que : $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.
- ★ Le triplet (x, y, z) est appelé **triplet de coordonnées** du point M dans le repère $(O; \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$.
- * x est l'abscisse du point M, y est l'ordonnée du point M, z est la cote du point M et on note

$$M(x; y; z)$$
 ou $M\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

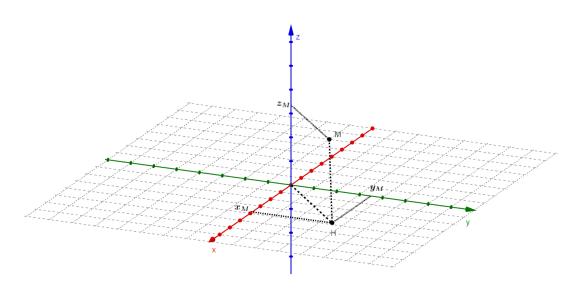


Figure 1 –

I.3. Coordonnées d'un vecteur dans une base de l'espace

Théorème et définition:

L'espace V_3 est muni d'une base $(\vec{i}, \vec{j}, \vec{k})$.

- * Pour tout vecteur \vec{u} de l'espace V_3 il existe un triplet (x, y, z) de \mathbb{R}^3 tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.
- * Le triplet (x, y, z) de \mathbb{R}^3 est appelé **triplet de coordonnées** du vecteur \vec{u} dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- \star x est l'abscisse du vecteur \vec{u} , y est l'ordonnée du vecteur \vec{u} , z est la cote du vecteur \vec{u} et on note M(x;y;z) ou $M\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Propriétés:

- * Soient $\vec{u}(x,y,z)$ et $\vec{v}(x',y',z')$ dans une base $(\vec{i},\vec{j},\vec{k})$ de V_3 .
 - $\vec{u} = \vec{v} \iff \{x = x' \text{ et } y = y' \text{ et } z = z'\}$
 - Les coordonnées du vecteur $\vec{u} + \vec{v}$ sont (x + x', y + y', z + z').
 - Pour tout réel α , les coordonnées du vecteur $\alpha \vec{u}$, sont $(\alpha x, \alpha y, \alpha z)$.
- ★ Soient $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points de l'espace \mathcal{E} muni d'un repère $(O; \vec{i}, \vec{j}, \vec{k})$.
 - Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B x_A, y_B y_A, z_B z_A)$.
 - Les coordonnées du point I le milieu du segment [AB] sont; $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$

II - Condition de colinéarité de deux vecteurs - Condition de coplanarité de trois vecteurs

II.1. Condition de colinéarité de deux vecteurs

Définition:

Soient $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ deux vecteurs de l'espace \mathcal{V}_3 muni d'une base $(\vec{i},\vec{j},\vec{k})$. Les nombres réels $\Delta_1 = \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = ab' - a'b$ et $\Delta_2 = \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = ac' - a'c$ et $\Delta_3 = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = bc' - b'c$ s'appellent **les déterminants extraits** des vecteurs \vec{u} et \vec{v} .

Proposition:

Soient $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ deux vecteurs de l'espace V_3 muni d'une base $(\vec{i},\vec{j},\vec{k})$.

Les vecteurs \vec{u} et \vec{v} sont colinéaires si, et seulement si Les nombres réels $\Delta_1 = \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = 0$ et

3

$$\Delta_2 = \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = 0 \text{ et } \Delta_3 = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = 0.$$

II.2. Condition de coplanarité de tois vecteurs

Définition:

Soient $\vec{u}(a,b,c)$, $\vec{v}(a',b',c')$ et $\vec{w}(a'',b'',c'')$ trois vecteurs de l'espace V_3 muni d'une base $(\vec{i},\vec{j},\vec{k})$. Le déterminant des vecteurs \vec{u} , \vec{v} et \vec{w} dans cet ordre est le nombre réel, noté $det(\vec{u}, \vec{v}, \vec{w})$ défini par :

$$det(\vec{u},\vec{v},\vec{w}) = \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix} = a \begin{vmatrix} b' & b'' \\ c' & c'' \end{vmatrix} - b \begin{vmatrix} a' & a'' \\ c' & c'' \end{vmatrix} + c \begin{vmatrix} a' & a'' \\ b' & b'' \end{vmatrix}$$

Proposition:

Soient $\vec{u}(a,b,c)$, $\vec{v}(a',b',c')$ et $\vec{w}(a'',b'',c'')$ trois vecteurs de l'espace V_3 muni d'une base

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si, et seulement si : $det(\vec{u}, \vec{v}, \vec{w}) = 0$

III - Etude analytique d'une droite de l'espace

III.1. Représentation paramétrique d'une droite

Théorème et définition:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit $A(x_A, y_A, z_A)$ de \mathcal{E} et $\vec{u}(a, b, c)$ un vecteur non nul.

Un point M(x,y,z) appartient à la droite \mathcal{D} passant par A et dirigée par le vecteur \vec{u} si, et seulement si:

$$\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases} \quad (t \in \mathbb{R})$$

Ce système est appelé une représentation paramétrique de la droite \mathcal{D} .

Remarque:

- ★ Chaque droite de l'espace possède une infinité de représentations paramétriques.
- ★ Une représentation paramétrique d'une demi-droite est la même que celle d'une droite sauf pour les valeurs prises par le paramètre t, on le prendra dans l'un des intervalles $[\alpha, +\infty[,]\alpha, +\infty[,]-\infty, \alpha],]-\infty, \alpha[.$
- ★ Pour un segment, on prendra t dans l'intervalle $[\alpha, \beta]$

III.2. Equations cartésiennes d'une droite

Définition:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

- Soit \mathcal{D} la droite passant par un point $A(x_A, y_A, z_A)$ et de vecteur directeur $\vec{u}(a, b, c)$. \star Si $abc \neq 0$, le système : $\frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$ est appelé **équations cartésiennes** de la droite \mathcal{D} .
 - * Si $ab \neq 0$ et c = 0 , le système $\begin{cases} \frac{x x_A}{a} = \frac{y y_A}{b} \\ z z_A = 0 \end{cases}$ est appelé **équations cartésiennes**

de la droite \mathcal{D} .

* Si a = b = 0 et $c \neq 0$, le système $\begin{cases} x = x_A \\ v = v_A \end{cases}$ est appelé **équations cartésiennes** de la droite \mathcal{D} .

IV - Etude analytique d'un plan de l'espace

IV.1. Représentation paramétrique d'un plan

Théorème et définition:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit \mathcal{P} la plan passant par un point $A(x_A, y_A, z_A)$ et de vecteurs directeurs $\vec{u}(a, b, c)$ et $\vec{v}(a', b', c')$.

$$\star \quad M(x,y,z) \in \mathcal{P} \quad \Leftrightarrow \quad \exists (t,k) \in \mathbb{R}^2 : \begin{cases} x = x_A + at + a'k \\ y = y_A + bt + b'k \\ z = z_A + ct + c'k \end{cases}$$

★
$$M(x,y,z) \in \mathcal{P}$$
 $\iff \exists (t,k) \in \mathbb{R}^2 : \begin{cases} x = x_A + at + a'k \\ y = y_A + bt + b'k \end{cases}$.

★ Le système
$$\begin{cases} x = x_A + at + a'k \\ y = y_A + bt + b'k \end{cases} (t,k) \in \mathbb{R}^2 \quad \text{est appelé une représentation paramétrique}$$

$$\begin{cases} z = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

$$\begin{cases} x = x_A + at + a'k \\ z = z_A + ct + c'k \end{cases}$$

Remarque:

Chaque plan de l'espace possède une infinité de représentations paramétriques.

IV.2. Equation cartésienne d'un plan

Théorème et définition:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit \mathcal{P} la plan passant par un point $A(x_A, y_A, z_A)$ et de vecteurs directeurs $\vec{u}(\alpha, \beta, \gamma)$ et $\vec{v}(\alpha', \beta', \gamma')$.

$$\star M(x,y,z) \in \mathcal{P} \iff det(\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}) = 0 \iff \begin{vmatrix} x - x_A & \alpha & \alpha' \\ y - y_A & \beta & \beta' \\ z - z_A & \gamma & \gamma' \end{vmatrix} = 0 \iff ax + by + cz + d = 0$$

où
$$a = \begin{vmatrix} \beta & \beta' \\ \gamma & \gamma' \end{vmatrix}; b = \begin{vmatrix} \alpha & \alpha' \\ \gamma & \gamma' \end{vmatrix}; c = \begin{vmatrix} \alpha & \alpha' \\ \beta & \beta' \end{vmatrix}; d = -(ax_A + by_A + cz_A)$$

L'équation ax + by + cz + d = 0 est appelée une équation cartésienne du plan \mathcal{E} .

Remarques:

- Tout plan de l'espace possède une infinité d'équations cartésiennes.
- Soient A, B et C trois points de l'espace. Alors une équation du plan (ABC) est donnée par : $M(x, y, z) \in (ABC) \Leftrightarrow det(\overrightarrow{AM}, \overrightarrow{AB}, \overrightarrow{AC}) = 0$
- Si l'espace est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.
 - ★ Une équation cartésienne du plan $\mathcal{P}_1(O; \vec{i}, \vec{j})$ est z = 0.
 - ★ Une équation cartésienne du plan $\mathcal{P}_2(O; \vec{j}, \vec{k})$ est x = 0
 - ★ Une équation cartésienne du plan $\mathcal{P}_3(O; \vec{i}, \vec{k})$ est y = 0

V - Positions relatives de droites et plans de l'espace

V.1. Positions relatives de deux droites.

Proposition:

Soient $(D) = \mathcal{D}(A, \vec{u})$ et $(D') = \mathcal{D}(B, \vec{v})$ deux droites de l'espace.

- ★ Si les vecteurs \vec{u} et \vec{v} sont colinéaires et $\{A \in (D') \text{ ou } B \in (D)\}$, alors les droites (D) et (D') sont confondues.
- ★ Si les vecteurs \vec{u} et \vec{v} sont colinéaires et $A \notin (D')$, alors les droites (D) et (D') sont strictement parallèles.
- \star Si les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires et $det(\overrightarrow{AB}, \vec{u}, \vec{v}) = 0$, alors les droites (D) et (D') sont sécantes.
- \star Si les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires et $det(\overrightarrow{AB}, \vec{u}, \vec{v}) \neq 0$, alors les droites (D) et (D') ne sont pas coplanaires.

V.2. Positions relatives d'une droite et d'un plan.

Proposition 1:

Soient $(D) = \mathcal{D}(A, \vec{u})$ une droite et $(P) = \mathcal{P}(B, \vec{v}, \vec{w})$ un plan de l'espace \mathcal{E} .

- * Si $det(\vec{u}, \vec{v}, \vec{w}) = 0$ et $A \in (P)$, alors $(D) \subset (P)$
- ★ Si $det(\vec{u}, \vec{v}, \vec{w}) = 0$ et $A \notin (P)$, alors la droite (D) est strictement parallèle au plan (P).
- ★ Si $det(\vec{u}, \vec{v}, \vec{w}) \neq 0$ alors la droite (D) coupe le plan (P) en un seul point.

Proposition 2:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère une droite \mathcal{D} passant par un point $A(x_A, y_A, z_A)$ et dirigée par le vecteur $\vec{u}(\alpha, \beta, \gamma)$, et un plan (P) d'équation cartésienne ax + by + cz + d = 0. Alors :

$$\mathcal{D} \parallel (P) \quad \Leftrightarrow \quad a\alpha + b\beta + c\gamma = 0 \; .$$

V.3. Positions relatives de deux plans.

Proposition:

L'espace \mathcal{E} est rapporté à un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

Soient (P) et (P') deux plans de l'espace définis paar leur équation cartésienne : (P) : ax+by+cz+d=0 et (P') : a'x+b'y+c'z+d'=0. Alors :

$$(P) \parallel (P') \quad \Leftrightarrow \quad \left(\quad \begin{vmatrix} b & c \\ b' & c' \end{vmatrix} = 0 \quad \text{et} \quad \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} = 0 \quad \text{et} \quad \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = 0 \quad \right)$$

En particulier, si $abc \neq 0$, alors:

$$(P) \parallel (P') \quad \Leftrightarrow \quad \frac{a'}{a} = \frac{b'}{b} = \frac{c'}{c}.$$

Remarque:

Les plans (P) et (P') ne sont pas parallèles
$$\Leftrightarrow$$
 $\left(\begin{vmatrix} b & c \\ b' & c' \end{vmatrix} \neq 0 \text{ ou } \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} \neq 0 \text{ ou } \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} \neq 0 \right)$

6