Chapitre 17: Le produit vectoriel dans l'espace

1ere BIOF SM S. EL JAAFARI

Table des matières

I- Orientation de l'espace

- I-1- Trièdre
- I-2- Repère orienté de l'espace

II- Produit vectoriel de deux vecteurs

- II-1- Définition
- II-2- Interprétation géométrique du produit vectoriel

III- Prpriétés du produit vectoriel

- III-1- Antisymétrie du produit vectoriel
- III-2- Bilinéarité du produit vectoriel
- III-3- Expression analytique du produit vectoriel

IV- Applications du produit vectoriel

- IV-1- Aire d'un triangle
- IV-2- Equation d'un plan défin par trois points de l'espace
- IV-3- Intersection de deux plans de l'espace
- IV-4- Distance d'un point à une droite

I- ORIENTATION DE L'ESPACE

I-1- TRIEDRE

DEFINITION

Un trièdre est une figure géométrique formée par trois demi-droites non coplanaires [Ox); [Oy); [Oz). de même origine O. On le note (Ox, Oy, Oz). Les demi-droites [Ox); [Oy); [Oz). s'appellent **les arêtes** du trièdre (Ox, Oy, Oz) et les plans xOy; yOz et zOx sont appelés **les faces** du trièdre.

I-2- REPERE ORIENTE DE L'ESPACE

DEFINITION 1

Soient O, I, J et K quatre points non coplanaires de l'espace.

- ★ Le bonhomme d'Ampère lié au trièdre ([OI), [OJ), [OK)) est un personnage imaginaire debout sur la demi-droite [OK) en ayant les pieds à l'origine O et regarde vers le point I.
- * Si le bonhomme d'Ampère a le point J à sa droite, on dit que le trièdre ([OI), [OJ), [OK)) est indirect.
- * Si le bonhomme d'Ampère a le point J à sa gauche, on dit que le trièdre ([OI), [OJ), [OK)) est direct.

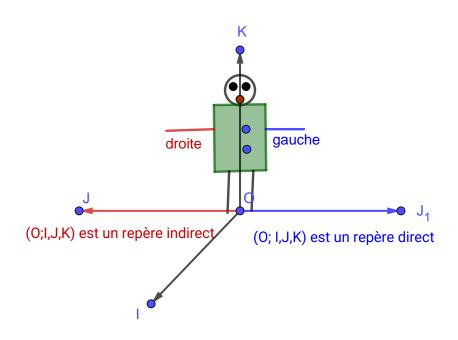


Figure 1 – bonhomme d'Ampère

DEFINITION 2

L'espace \mathcal{E} est rapporté à un repère $(O, \vec{i}, \vec{j}, \vec{k})$. On pose $\overrightarrow{OI} = \vec{i}; \overrightarrow{OJ} = \vec{j}; \overrightarrow{OK} = \vec{k}$.

- ★ On dit que le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est **direct** si le trièdre ([OI), [OJ), [OK)) est direct. Dans ce cas on dit aussi que la base $(\vec{i}, \vec{j}, \vec{k})$ est directe.
- ★ On dit que le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est **indirect** si le trièdre ([OI), [OJ), [OK)) est indirect. Dans ce cas on dit aussi que la base $(\vec{i}, \vec{j}, \vec{k})$ est indirecte.
- \star On dit que l'espace $\mathcal E$ est **orienté positivement** lorsqu'il est muni d'un repère direct.

PROPOSITION

Si le repère $(O, \vec{i}, \vec{j}, \vec{k})$. est orthonormal direct, alors :

- * Les repères $(O, \vec{j}, \vec{k}, \vec{i})$ et $(O, \vec{k}, \vec{i}, \vec{j})$ sont directs.
- ★ Les repères $(O, \vec{i}, \vec{k}, \vec{j})$, $(O, \vec{j}, \vec{i}, \vec{k})$ et $(O, \vec{k}, \vec{j}, \vec{i})$ sont indirects.
- ★ Les repères $(O, -\vec{i}, \vec{j}, \vec{k})$, $(O, \vec{i}, -\vec{j}, \vec{k})$ et $(O, \vec{i}, \vec{j}, -\vec{k})$ sont indirects.

REMARQUE:

Soit O un point quelconque de l'espace \mathcal{E} , alors : $(O, \vec{i}, \vec{j}, \vec{k})$ est un rpère direct \Leftrightarrow la base $(\vec{i}, \vec{j}, \vec{k})$ est directe.

II- PRODUIT VECTORIEL DE L'ESPACE

II-1- DEFINITION

DEFINITION

Soient \vec{u} et \vec{v} deux vecteurs de l'espace orienté tels que : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

- Si \vec{u} et \vec{v} ne sont pas colinéaires, alors **le produit vectoriel** desn vecteurs \vec{u} et \vec{v} , dans cet ordre, noté $\vec{u} \wedge \vec{v}$, est le vecteur $\vec{w} = \overrightarrow{OC}$ défini par :
 - ► La droite (OC) est perpendiculaire au plan (OAB).
 - ▶ Le trièdre ([OA), [OB), [OC)) est direct.
 - $| |\overrightarrow{OC}|| = ||\overrightarrow{OA}|| \times ||\overrightarrow{OB}|| \times sin(\widehat{AOB}).$
- Si \vec{u} et \vec{v} sont colinéaires, alors : $\vec{u} \wedge \vec{v} = \vec{0}$

REMARQUE:

Le produit vectoriel des deux vecteurs \vec{u} et \vec{v} est indépendant du choix du point O.

PROPOSITION

- * Pour tout vecteur \vec{u} de V_3 on a: $\vec{u} \wedge \vec{u} = \vec{0}$ et $\vec{u} \wedge \vec{0} = \vec{0}$
- \star Si $\vec{w} = \vec{u} \wedge \vec{v}$, alors: $\vec{w} \perp \vec{u}$ et $\vec{w} \perp \vec{v}$ et $||\vec{u} \wedge v|| = ||\vec{u}|| \times ||\vec{v}|| \times |\sin(\vec{u};\vec{v})|$
- \star Si $\vec{w} = \vec{u} \wedge \vec{v}$, alors: la base $(\vec{u}, \vec{v}, \vec{w})$ est directe.
- ★ Les points A, B et C sont alignés si, et seulement si $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{0}$.

II-2- INTERPRETATION GEOMETRIQUE DU PRODUIT VECTORIEL

Soient \vec{u} et \vec{v} deux vecteurs de l'espace orienté tels que : $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB}$ et $\vec{w} = \vec{u} \wedge \vec{v}$. Le réel $\|\vec{w}\| = \|\vec{u} \wedge \vec{v}\|$ est l'aire du parallélogramme construit avec les trois points O, A, B.

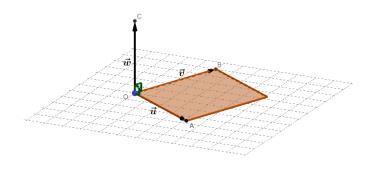


Figure2

III- PROPRIETES DU PRODUIT VECTORIEL

III-1- ANTYSYMETRIE DU PRUDUIT VECTORIEL

PROPOSITION

Pour tous vecteurs \vec{u} et \vec{v} de l'espace orienté et tout nombre réel α , on a : $\vec{v} \wedge \vec{u} = -\vec{u} \wedge \vec{v}$. On dit que le produit vectoriel est **antisymétrique**.

III-2- BILINEARITE DU PRUDUIT VECTORIEL

PROPOSITION

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace orienté et α un nombre réel . Alors :

III-3- EXPRESSION ANALYTIQUE DU PRUDUIT VECTORIEL

PROPOSITION

L'espace V_3 est rapporté à une base orthonormée directe $(\vec{i}, \vec{j}, \vec{k})$. Soient $\vec{u}(x, y, z)$ et $\vec{v}(x', y', z')$ deux vecteurs de V_3 . Alors :

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \vec{i} - \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \vec{j} + \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \vec{k}$$

IV- APPLICATIONS DU PRODUIT VECTORIEL

IV-1- Aire d'un triangle

PROPOSITION

Soient A, B et C trois points non alignés de l'espace orienté \mathcal{E} .

L'aire du triangle ABC est : $S_{ABC} = \frac{1}{2} ||\overrightarrow{AB} \wedge \overrightarrow{AC}||$

IV-2- Equation cartésienne d'un plan défini par trois points non alignés

PROPOSITION

Soient A, B et C trois points non alignés de l'espace orienté \mathcal{E} . On a :

$$M \in (ABC) \iff \overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$$

REMARQUE:

Le vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est un vecteur normal au plan (ABC).

IV-3- Intersection de deux plans de l'espace

PROPOSITION

Soient \mathcal{P} et \mathcal{P}' deux plans sécants suivant un droite \mathcal{D} dans l'espace orienté \mathcal{E} . Soit \vec{n} in vecteur normal au plan \mathcal{P} et \vec{n}' un vecteur normal au plan \mathcal{P}' . Alors : $\vec{n} \wedge \vec{n}'$ est un vecteur directeur de la droite \mathcal{D} .

IV-4- DISTANCE D'UN POINT à UNE DROITE

PROPOSITION

L'espace \mathcal{E} est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. Soit \mathcal{D} une droite passant par un point A et dirigée par un vecteur non nul \vec{u} . La distance d'un point M de l'espace à la droite \mathcal{D} est donnée par :

$$d\big(M,(\mathcal{D}\big) = \frac{\|\overrightarrow{AM} \wedge \vec{u}\|}{\|\vec{u}\|}$$

