

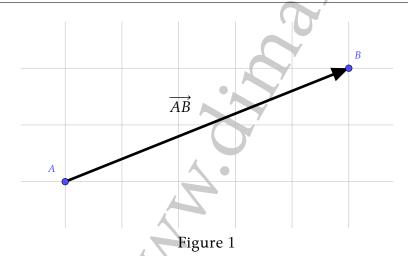
I- Notion de vecteur dans l'espace

1- Définition

Définition:

Soient A et B deux points de l'espace.

- 1) Si $A \neq B$ le vecteur \overrightarrow{AB} est déterminé par :
 - sa direction est celle de la droite (*AB*).
 - Son sens de A vers B.
 - Sa norme, notée $\|\overrightarrow{AB}\|$, est la distance AB, et on écrit $\|\overrightarrow{AB}\| = AB$.
- 2) Si A = B, le vecteur \overrightarrow{AB} est le vecteur nul noté $\overrightarrow{0}$ et on a : $\overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{0}$



Remarque: Pour le vecteur \overrightarrow{AB} :

- ★ le point A est l'origine .
- ★ le point B est l'extrémité .

2 Egalité de deux vecteurs - Opposé d'un vecteur

Définition:

Les deux vecteurs de l'espace \overrightarrow{AB} et \overrightarrow{CD} sont égaux si, et seulement s'ils ont la même direction, le même sens et la même norme.

Autrement dit : $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \begin{cases} (AB) \parallel (CD) \\ \overrightarrow{AB} \text{ et } \overrightarrow{CD} \text{ ont le même sens} \\ \|\overrightarrow{AB}\| = \|\overrightarrow{CD}\| \end{cases}$

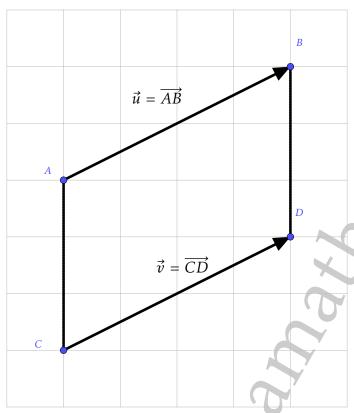


Figure 2

Proposition 1:

Soient A, B, C et D des points de l'espace tels que $A \neq B$ et $C \neq D$. Alors :

 $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \text{le quadrilatère ABDC est un parallélogramme}$

Proposition 2:

Soit O un point de l'espace et \vec{u} un vecteur. Alors il existe un unique point M de l'espace tel que $\vec{u} = \overrightarrow{OM}$.

Remarque:

Soient A, B et C trois points de l'espace. Alors il existe un unique point M de l'espace tel que ABMC soit un parallélogramme.

II- Opérations sur les vecteurs dans l'espace

1- Addition des vecteurs

Définition:

Soient A, B et C trois points de l'espace. On pose : $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{BC}$ et $\vec{w} = \overrightarrow{AC}$.

La somme des vecteurs \vec{u} et \vec{v} est le vecteur \vec{w} et on écrit $\vec{u} + \vec{v} = \vec{w}$ ou $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

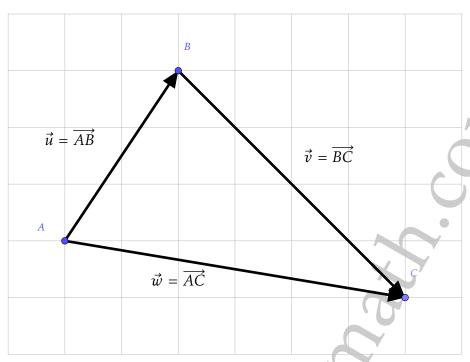


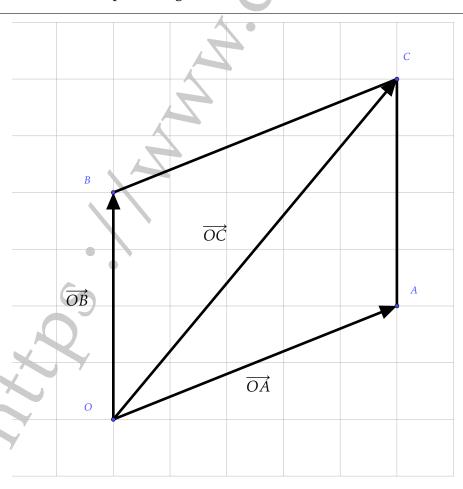
Figure 3

Proposition 1 : (Relation de Chasles)

Pour tous les points P, M et Q de l'espace, on a : $\overrightarrow{PM} + \overrightarrow{MQ} = \overrightarrow{PQ}$.

Proposition 2 : (Règle du parallélogramme)

Le quadrilatère \overrightarrow{OACB} est un parallélogramme si, et seulement si $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$



Proposition 3 : (Propriétés de l'addition des vecteurs dans l'espace)

Pour tous les vecteurs de l'espace ; \vec{u} , \vec{v} et \vec{w} , on a :

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

$$\vec{u} + \vec{0} = \vec{u}$$

$$\vec{u} + (-\vec{u}) = \vec{0}$$

2- Multiplication d'un vecteur par un réel

Définition:

Soit \vec{u} un vecteur non nul, et k un réel non nul.

Le produit du vecteur \vec{u} par le réel k est le vecteur \vec{v} noté $\vec{k}.\vec{u}$ ou simplement \vec{ku} qui vérifie les conditions suivantes :

- \star Les vecteurs \vec{u} et \vec{v} ont la même direction.
- \star Les vecteurs \vec{u} et \vec{v} ont le même sens si k > 0, et ils sont de sens opposés si k < 0.
- $\star \quad \|\vec{v}\| = |k| \times \|\vec{u}\|$

On écrit : $\vec{v} = k\vec{u}$.

Remarque:

Pour tout vecteur \vec{u} et tout réel k, on a : $0.\vec{u} = \vec{0}$ et $\vec{k}.\vec{0} = \vec{0}$.

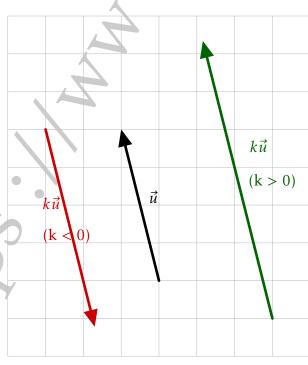


Figure 5

Proposition:

Pour tous vecteurs \vec{u} et \vec{v} de l'espace et pour tous réels α et β , on a :

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \beta \vec{v}$$

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}$$

$$1.\vec{u} = \vec{u}$$

$$\alpha(\beta \vec{u}) = (\alpha \times \beta)\vec{u}$$

$$\alpha(-\beta \vec{u}) = (-\alpha)(\beta \vec{u}) = -(\alpha \times \beta)\vec{u}$$

III- Vecteurs colinéaires dans l'espace

1- Définition

Définition:

On dit que deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si, et seulement s'il existe un réel k tel que $\vec{v} = k\vec{u}$.

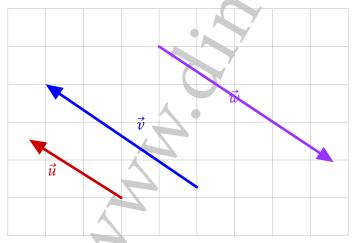


Figure 6

Proposition:

- \star Le vecteur nul $\vec{0}$ est colinéaire avec tous les vecteurs de l'espace.
- \star $(AB)\parallel(CD)$ \Leftrightarrow les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- ★ Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

2- Droite vectorielle

Définition 1

Soient A et B deux points de l'espace.

Tout vecteur non nul \vec{u} colinéaire avec le vecteur \overrightarrow{AB} est appelé vecteur de la droite (AB).

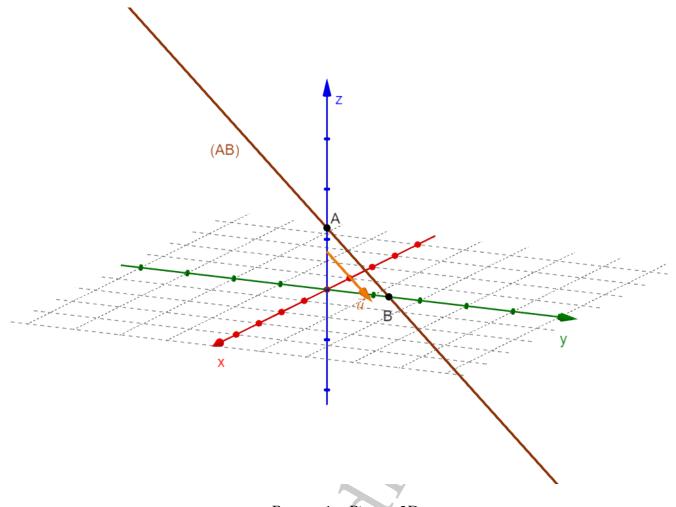


Figure 1 – Figure 3D

Définition 2:

Soit \vec{u} un vecteur de l'espace.

L'ensemble $D(\vec{u})$ de tous les vecteurs de l'espace colinéaires avec \vec{u} est appelée la droite vectorielle de vecteur directeur \vec{u} .

Autrement dit : $D(\vec{u}) = \{ \vec{v}/\vec{v} = k\vec{u}, k \in \mathbb{R} \}.$

Remarque:

 $D(\vec{u}) = D(\vec{v}) \Leftrightarrow \vec{u} \text{ et } \vec{v} \text{ sont colinéaires.}$

3- Détermination vectorielle d'une droite

Définition:

Soit A un point de l'espace, et \vec{u} un vecteur de l'espace. l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM} = k\vec{u}$ est la droite passant par le point A et de vecteur directeur \vec{u} , on la note $D(A, \vec{u})$. $D(A, \vec{u}) = \{ M/\overrightarrow{AM} = k\vec{u}, k \in \mathbb{R} \}$.

Remarques:

- ★ Tout vecteur $\vec{v} = k\vec{u} / k \neq 0$ est aussi un vecteur directeur de la droite $D(A, \vec{u})$.
- * Si $B \in D(A, \vec{u})$ alors $D(A, \vec{u}) = D(B, \vec{u})$
- \star Pour tout $\lambda \in \mathbb{R}^*$: $D(A, \vec{u}) = D(A, \lambda \vec{u})$

★ Si A et B sont deux points de l'espace, alors : $M \in (AB)$ \iff $(\exists k \in \mathbb{R})$: $\overrightarrow{AM} = k\overrightarrow{AB}$

IV- Vecteurs coplanaires dans l'espace

1- Définition

Définition 1:

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

On dit que les vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** s'il existe quatre points A, B, C et D de l'espace tels que :

- ★ les points A, B, C et D appartiennent à un même plan
- \star $\vec{u} = \overrightarrow{AB}, \vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{AD}$

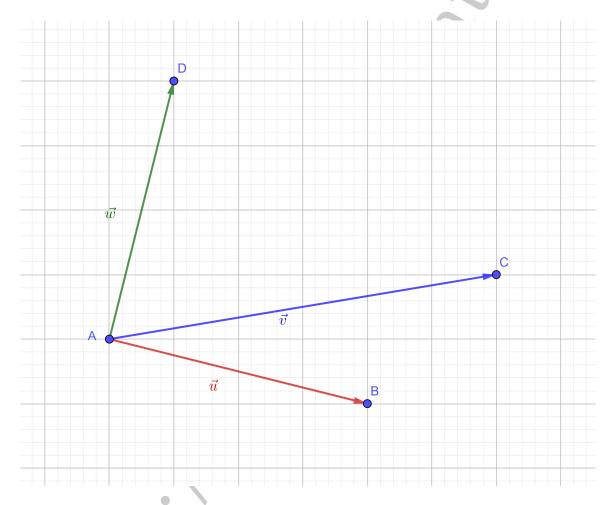


Figure 2 – Figure 3D

Remarque:

- \star Le vecteur nul $\vec{0}$ est coplanaire avec deux vecteurs quelconques de l'espace.
- \star Si \vec{u} et \vec{v} sont deux vecteurs colinéaires de l'espace, alors ils sont coplanaires avec un vecteur quelconque \vec{w} de l'espace.

Proposition 1:

Les vecteurs de l'espace \vec{u} , \vec{v} et \vec{w} sont **coplanaires** si, et seulement s'il existe (a,b) de \mathbb{R}^2 tel que $\vec{w} = a\vec{u} + b\vec{v}$.

Proposition 2:

Soient A, B, C et M quatre points de l'espace.

Les points A, B, C et M sont **coplanaires** si, et seulement s'il existe (a,b) de \mathbb{R}^2 tel que $\overrightarrow{AM} = a\overrightarrow{AB} + b\overrightarrow{AC}$.

2- Plan vectoriel

Définition :

Soient \vec{u} et \vec{v} deux vecteurs non colinéaires de l'espace.

L'ensemble des vecteurs qui s'écrivent comme combinaisons linéaires des vecteurs \vec{u} et \vec{v} , noté $P(\vec{u}, \vec{v})$ est appelé **le plan vectoriel de vecteurs directeurs** \vec{u} **et** \vec{v} .

Autrement dit: $P(\vec{u}, \vec{v}) = \{ \vec{w} / \vec{w} = a\vec{u} + b\vec{v}, (a, b) \in \mathbb{R}^2 \}$

3- Détermination vectorielle d'un plan

Définition:

Soit A un point de l'espace et \vec{u} et \vec{v} deux vecteurs non colinéaires de l'espace.

L'ensemble des points M de l'espace tels que : $\overrightarrow{AM} = x\vec{u} + y\vec{v}$ où $(x, y) \in \mathbb{R}^2$ est le plan de l'espace qui passe par A et de vecteurs directeurs \vec{u} et \vec{v} , noté $P(A, \vec{u}, \vec{v})$.

On a: $P(A, \vec{u}, \vec{v}) = \{ M / \overrightarrow{AM} = x\vec{u} + y\vec{v}, (x, y) \in \mathbb{R}^2 \}$

Remarque:

★ Soit A, B et C trois points non alignés de l'espace. Alors (ABC) est le plan défini par :

 $M \in (ABC) \iff \exists (x,y) \in \mathbb{R}^2 : \overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}.$

* Si \vec{u} et \vec{v} deux vecteurs non colinéaires de l'espace et A un point, alors on a :pour tout couple $(\lambda, \mu) \in \mathbb{R}^{*2}$ $P(A, \vec{u}, \vec{v}) = P(A, \lambda \vec{u}, \mu \vec{v})$

IV- Parallélisme dans l'espace

1- Parallélisme de deux droites dans l'espace

Définition:

Soient A et B deux points de l'espace et \vec{u} et \vec{v} deux vecteurs non nuls.

Les droites $D(A, \vec{u})$ et $D(B, \vec{v})$ sont parallèles si, et seulement si les vecteurs \vec{u} et \vec{v} sont colinéaires.

Autrement dit : $D(A, \vec{u}) \parallel D(A, \vec{v}) \iff (\exists k \in \mathbb{R}) \text{ tel que } \vec{v} = k\vec{u}.$

Remarque:

Soient A, B, C et D quatre points de l'espace tels que $A \neq B$ et $C \neq D$, alors : $(AB) \parallel (CD) \iff (\exists k \in \mathbb{R})$ tel que $\overrightarrow{CD} = k\overrightarrow{AB}$.

2- Parallélisme d'une droite et d'un plan dans l'espace

Définition:

Soit \mathcal{D} une droite de vecteur directeur \vec{u} et \mathcal{P} un plan de vecteurs directeurs \vec{v} et \vec{w} . La droite \mathcal{D} et le plan \mathcal{P} sont parallèles si, et seulement si les vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires. Autrement dit : $\mathcal{D} \parallel \mathcal{P} \iff \exists (x,y) \in \mathbb{R}^2 : \vec{u} = x\vec{v} + y\vec{w}$.

3- Parallélisme de deux plans dans l'espace

Définition :

Soient \mathcal{P} un plan de vecteurs directeurs \vec{u} et \vec{v} et \mathcal{P}' un plan de vecteurs directeurs $\vec{u'}$ et $\vec{v'}$. Les plans \mathcal{P} et \mathcal{P}' sont parallèles si, et seulement si :

 $\begin{cases} \vec{u}, \ \vec{u'} \text{ et } \vec{v} \text{ sont coplanaires} \\ \vec{u}, \ \vec{u'} \text{ et } \vec{v'} \text{ sont coplanaires} \end{cases}$

Autrement dit : $\mathcal{P} \parallel \mathcal{P}' \iff \begin{cases} \exists (x,y) \in \mathbb{R}^2 : \vec{u'} = x\vec{u} + y\vec{v} \\ \exists (x',y') \in \mathbb{R}^2 : \vec{u} = x\vec{u'} + y\vec{v'} \end{cases}$

