Chap11: GENERALITES SUR LES FONCTIONS

TABLES DES MATIERES

I- Fonctions numériques

- I-1- Image et antécédent par une fonction
- I-2- Domaine de définition d'une fonction
- I-3- Egalité de deux fonctions
- I-4- Représentation graphique d'une fonction

II- Parité d'une fonction

- II-1- Fonction paire
- II-1- Fonction impaire

III- Monotonie d'une fonction

- III-1- Définition
- III-2- Taux de variation d'une fonction
- III-3- Extremums d'une fonction
- III-4- Tableau de variation d'une fonction
- III-5- Monotonie et parité d'une fonction

IV- Résolution graphique des équations et des inéquations

- IV-1- Résolution graphique des équations
- IV-2- Résolution graphique des inéquations

V- Etude et courbes des fonctions de référence

- **V-1- Fonction carrée:** $x \mapsto x^2 : a \in \mathbb{R}$
- V-2- Fonction inverse: $x \mapsto \frac{1}{x}$:
- V-3- Fonction racine carrée : $x \mapsto \sqrt{x}$
- **V-4- Fonction cube :** $x \mapsto x^3$
- V-5- Fonction valeur absolue : $x \mapsto |x|$

VI- Etude et courbes des fonctions associées

- VI-1- Courbes obtenues par translation
- VI-2- Courbes obtenues par réflexion d'axe (O, \vec{i})
- VI-3- Courbes obtenues par affinité orthogonale

VII- Exemples de fonctions associées

VII-1- Fonctions polynômes du second degré : $x \mapsto ax^2 + bx + c$, $a \ne 0$

VII-2- Fonctions homographiques: $x \mapsto \frac{ax+b}{cx+d}$, $c \neq 0$

VII-3- Fonction : $x \mapsto \sqrt{x-a}$, $a \in \mathbb{R}$

I- Fonctions numériques

I-1- IMAGE ET ANTECEDENT PAR UNE FONCTION

DEFINITION

- ▶ Une fonction f associe à un nombre réel x un unique nombre réel qu'on note f(x) ou $f: x \mapsto f(x)$.
- ▶ Le nombre f(x) s'appelle **l'image de** x **par la fonction** f.
- Le nombre x s'appelle un antécédent du nombre réel f(x) par la fonction f.

REMARQUES

- ★ Une image d'un nombre par une fonction **est unique**.
- ★ Pour les antécédents, on a 3 possibilités :
 - aucun antécédent
 - un unique antécédent
 - beaucoup d'antécédents
- \star si f(2) = 5, alors : 2 est un antécédent de 5 par la fonction f et 5 est l'image de 2 par la fonction f.

I-2- DOMAINE DE DEFINITION D'UNE FONCTION

DEFINITION

Le domaine (ou l'ensemble) de définition d'une fonction numérique f est l'ensemble de toutes les valeurs de x pour lesquelles f(x) est bien définie $(f(x) \in \mathbb{R})$.

PROPOSITION

Pour trouver le domaine de définition d'une fonction f on doit identifier les opérations mathématiques qui peuvent rendre la fonction indéfinie :

- ▲ Le dénominateur d'une fraction ne doit jamais être égal à zéro.
- ▲ L'argument d'une racine carrée (la quantité sous le radical $\sqrt{\bullet}$) doit être positif ou nul

Exemples

- * $f(x) = 2x^3 5x^2 + 4x + 23$ On remarque que la fonction ne contient ni quotient ni racine carré, donc $D_f = \mathbb{R}$. On peut donc dire que **le domaine de définition d'une fonction polynôme est** \mathbb{R} .
- $* f(x) = \frac{3x+5}{2x-1}. \quad x \in D_f \Leftrightarrow 2x-1 \neq 0 \Leftrightarrow x \neq \frac{1}{2} \quad \text{d'où } D_f = \mathbb{R}\{\frac{1}{2} =] \infty, \frac{1}{2}[U]\frac{1}{2}, +\infty[\ .]$
- $* f(x) = \sqrt[2x-1]{x-3}. \quad x \in D_f \Leftrightarrow x-3 \ge 0 \Leftrightarrow x \ge 3 \quad \text{d'où } D_f = [3, +\infty.]$
- $* f(x) = \frac{\sqrt{x+1}}{\sqrt{x}-2}, \quad x \in D_f \Leftrightarrow (x+1 \ge 0 \quad \text{et} \quad \sqrt{x}-2 \ne 0) \Leftrightarrow (x \ge -1 \quad \text{et} \quad \sqrt{x} \ne 2) \Leftrightarrow (x \ge -1 \quad \text{et} \quad x \ne 4)$ d'où $D_f = [-1, 4[\cup]4, +\infty[.$

I-3- EGALITE DE DEUX FONCTIONS

DEFINITION

Deux fonctions f et g sont considèrées comme égales si, et seulement si elles ont le même domaine de définition et chaque élément x de leur domaine de définition a la même image par les deux fonctions.

Autrement dit :
$$\mathbf{f} = \mathbf{g}$$
 \Leftrightarrow
$$\begin{cases} D_f = D_g \\ f(x) = g(x) \text{ pour tout } x \in D_f \end{cases}$$

Exemples

- ** Soient f et g les fonctions définies par : f(x) = (x-2)(2x+1) et $g(x) = 2x^2 3x 2$. Montrer que f = g.
- En effet on a $D_f = D_g = \mathbb{R}$ et pour tout $x \in \mathbb{R}$, $(x-2)(2x+1) = 2x^2 + x 4x 2 = 2x^2 3x 2$ donc pour tout $x \in \mathbb{R}$, f(x) = g(x). Par conséquent f = g.
- * Soient g et h les fonctions définies par : $g(x) = -x^2 + 6x 5$ et $h(x) = 4 (x 3)^2$. Montrer que g = h.
- En effet on a $D_g = D_h = \mathbb{R}$ et pour tout $x \in \mathbb{R}$, $4 (x 3)^2 = 4 x^2 + 6x 9 = -x^2 + 6x 5$ donc pour tout $x \in \mathbb{R}$, g(x) = h(x). Par conséquent g = h.
- * Soient f et g les fonctions définies par : $f(x) = \frac{x^2-4}{x-2}$ et g(x) = x+2. Est-ce que f=g?. On a $D_f = \{x \in \mathbb{R}/x 2 \neq 0\} = \{x \in \mathbb{R}/x \neq 2\} = \mathbb{R} \{2\}$, et $D_g = \mathbb{R}$. Donc $D_f \neq D_g$. Par conséquent les fonctions f et g ne sont pas égales.

I-4- Représentation graphique d'une fonction

DEFINITION

La représentation graphique d'une fonction numérique f est l'ensemble des points du plan qui ont pour coordonnées dans un repère de ce plan, (x; f(x)) pour tout x de son domaine de définition D_f . Le réel x s'appelle **l'abscisse** et f(x) s'appelle **l'ordonnée**. La courbe représentative de la fonction f est souvent notée (C_f) .

Exemples

* Tracer dans un repère orthonormé $(O; \vec{i}, \vec{j})$ la courbe représentative de la fonction f définie par : f(x) = x + 2.

On a vu précédemment que la fonction f ainsi définie est une fonction affine, donc sa courbe représentative est une droite. Pour la tracer on a besoin seulement de deux points qu'on choisit en donnant deux valeurs à x. On a donc f(0) = 2 et f(1) = 3 alors la courbe (C_f) passe par les points A(0,2) et B(1,3).

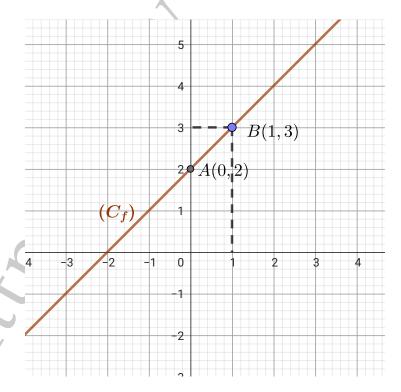


Figure 1 – Courbe de la fonction $f: x \mapsto x + 2$

II- PARITE D'UNE FONCTION

II-1- FONCTION PAIRE

DEFINITION

Soit f une fonction numérique définie sur son domaine de définition D_f . On dit que f est une fonction paire si, et seulement si :

$$\begin{cases} Si \ x \in D_f & \text{alors} \ (-x) \in D_f \\ Si \ x \in D_f & \text{alors} \ f(-x) = f(x) \end{cases}$$

Remarque

Pour montrer qu'une fonction f n'est pas paire, il suffit de montrer qu'il existe $x_0 \in D_f$ tel que $(-x_0) \notin D_f$ ou $f(-x_0) \neq f(x_0)$.

PROPOSITION

Soit f une fonction numérique définie sur son domaine de définition D_f et (C_f) sa courbe représentative dans un repère orthogonal $(O; \vec{i}, \vec{j})$.

f est une fonction paire si, et seulement si sa courbe (C_f) est symétrique par rapport à l'axe des ordonnées.

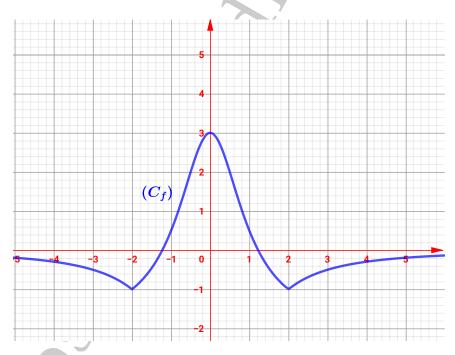


Figure 2 – Courbe représentative d'une fonction paire

II-2- FONCTION IMPAIRE

DEFINITION

Soit f une fonction numérique définie sur son domaine de définition D_f . On dit que f est une fonction impaire si, et seulement si :

$$\begin{cases} Si \ x \in D_f & \text{alors} \ (-x) \in D_f \\ Si \ x \in D_f & \text{alors} \ f(-x) = -f(x) \end{cases}$$

Remarque

Pour montrer qu'une fonction f n'est pas impaire, il suffit de montrer qu'il existe $x_0 \in D_f$ tel que $(-x_0) \notin D_f$ ou $f(-x_0) \neq -f(x_0)$.

PROPOSITION

Soit f une fonction numérique définie sur son domaine de définition D_f et (C_f) sa courbe représentative dans un repère $(O; \vec{i}, \vec{j})$.

f est une fonction impaire si, et seulement si sa courbe (C_f) est symétrique par rapport à l'origine O du repère.

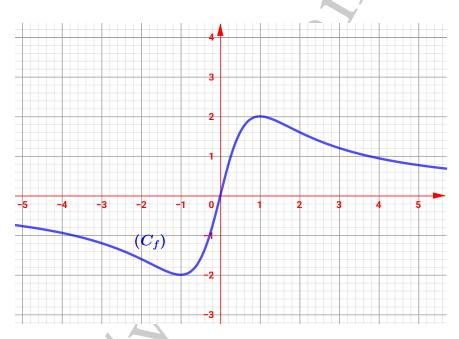


Figure 3 – Courbe représentative d'une fonction impaire

III- MONOTONIE D'UNE FONCTION

III-1- DEFINITIONS

DEFINITION 1

Soit f une fonction numérique définie sur son domaine de définition D_f et I un intervalle de D_f .

 \bigoplus On dit que **la fonction** f **est croissante sur l'intervalle I** si, et seulement si : pour tout x_1 et x_2 de I, Si $x_1 \le x_2$ alors $f(x_1) \le f(x_2)$. (On dit aussi que f conserve l'ordre).

 \bigoplus On dit que **la fonction** f **est décroissante sur l'intervalle I** si, et seulement si : pour tout x_1 et x_2 de I, Si $x_1 \le x_2$ alors $f(x_1) \ge f(x_2)$.(On dit aussi que f inverse l'ordre).

 \bigoplus On dit que **la fonction** f **est constante sur l'intervalle I** si, et seulement si : pour tout x_1 et x_2 de I, $f(x_1) = f(x_2)$.

 \bigoplus On dit que **la fonction** f **est monotone sur l'intervalle I** si elle est soit croissante, soit décroissante sur l'intervalle I.

DEFINITION 2

Soit f une fonction numérique définie sur son domaine de définition D_f et I un intervalle de D_f .

- On dit que la fonction f est strictement croissante sur l'intervalle I si, et seulement si : pour tout x_1 et x_2 de I, Si $x_1 < x_2$ alors $f(x_1) < f(x_2)$.
- On dit que **la fonction** f **est strictement décroissante sur l'intervalle I** si, et seulement si : pour tout x_1 et x_2 de I, Si $x_1 < x_2$ alors $f(x_1) > f(x_2)$.
- \bigoplus On dit que **la fonction** f **est strictement monotone sur l'intervalle I** si elle est soit strictement croissante, soit strictement décroissante sur l'intervalle I.

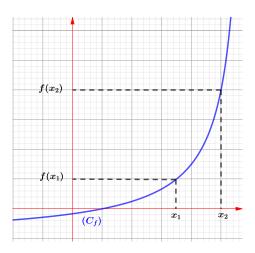


FIGURE 4 – Courbe d'une fonction croissante sur un intervalle

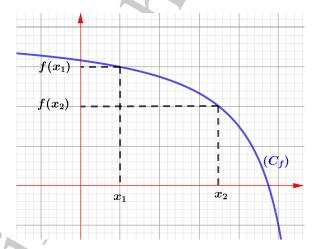


FIGURE 5 – Courbe d'une fonction décroissante sur un intervalle

III-2- Taux de variation d'une fonction

DEFINITION

Soit f une fonction numérique définie sur son domaine de définition D_f et I un intervalle de D_f . Soient a et b deux éléments de I tels que : $a \neq b$. On appelle **taux de variation ou taux d'accroissement de la fonction** f **entre a et b**, le nombre réel, noté, $T_f(a,b)$ défini par : $T_f(a,b) = \frac{f(b)-f(a)}{b-a}$.

PROPOSITION

Soit f une fonction numérique définie sur son domaine de définition D_f et I un intervalle de D_f .

- \bigotimes **La fonction** f **est croissante sur I** si, et seulement si: pour tout $a \in I$ et $b \in I$ tels que $a \neq b$ on a $T_f(a,b) \geq 0$
- \bigotimes La fonction f est strictement croissante sur I si, et seulement si : pour tout $a \in I$ et $b \in I$ tels que $a \neq b$ on a $T_f(a,b) > 0$
- \bigcirc La fonction f est décroissante sur I si, et seulement si : pour tout $a \in I$ et $b \in I$ tels que $a \neq b$ on a $T_f(a,b) \leq 0$
- $igotimes_{\bf La}$ fonction f est strictement décroissante sur ${\bf I}$ si, et seulement si : pour tout $a \in I$ et $b \in I$ tels que $a \ne b$ on a $T_f(a,b) < 0$
- \bigotimes **La fonction** f **est constante** si, et seulement si : pour tout $a \in I$ et $b \in I$ on a $T_f(a, b) = 0$

Remarque

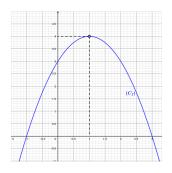
Le taux d'accroissement de la fonction f entre a et b correspond au coefficient directeur de la droite (AB) où A(a, f(a)) et B(b, f(b)) sont deux points de la courbe représentative de la fonction f.

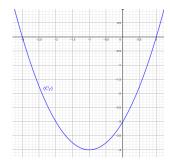
III-3- EXTREMUMS D'UNE FONCTION

DEFINITION

Soit f une fonction numérique définie sur son domaine de définition D_f et I un intervalle ouvert de D_f .

- ★ On dit que f(a) est un maximum (ou une valeur maximale) de la fonction f sur l'intervalle I si, et seulement si : pour tout $x \in I : f(x) \le f(a)$.
- ★ On dit que f(a) est un minimum (ou une valeur minimale) de la fonction f sur l'intervalle I si, et seulement si : pour tout $x \in I : f(x) \ge f(a)$.





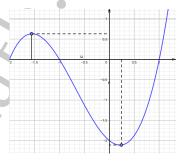


FIGURE 6 – Maximum d'une fonction

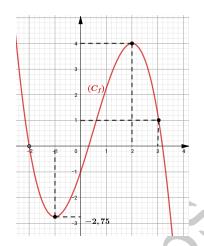
FIGURE 7 – Minimum d'une fonction

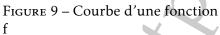
Figure 8 – Extremums d'une fonction

III-4- TABLEAU DE VARIATION D'UNE FONCTION

DEFINITION

Etudier les variations d'une fonction signifie qu'il faut trouver sur quels intervalles elle sera croissante, décroissante puis constante. Ces résultats sont représentés dans un tableau appelé **tableau de variations de la fonction**, où, les flèches dirigées vers le haut désignent que la fonction est croissante et les flèches dirigées vers le bas désignent que la fonction est décroissante.





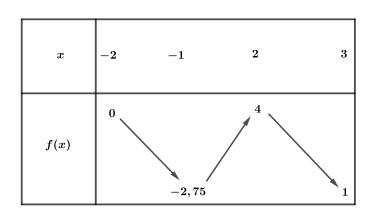


Figure 10 – Tableau de variation de la fonction f

Dans cet exemple:

- la fonction f est décroissante sur les deux intervalles [-2, -1] et [2, 3]
- La fonction f est croissante sur l'intervalle [-1,2]
- 4 = f(2) est le maximum absolu de la fonction f sur l'intervalle [-2, 3]
- -2,75 = f(-1) est le minimum absolu de la fonction f sur l'intervalle [-2,3].

IV- RESOLUTION GRAPHIQUE D'EQUATIONS ET D'INEQUATIONS

IV-1- RESOLUTION GRAPHIQUE D'UNE EQUATION

PROPOSITION 1

Soit f une fonction numérique définie sur son domaine de définition D_f et $k \in \mathbb{R}$. Pour résoudre graphiquement l'équation f(x) = k, on suit les étapes suivantes :

- lacktriangle Dans un repère orthonormé, on construit (C_f) la courbe représentative de la fonction f.
- **\triangle** Dans le même repère, on construit (Δ) la droite d'équation y = k
- **△** On détermine les points d'intersection entre (C_f) et (Δ) lorsqu'ils existent.
- L'ensemble des solutions de l'équation f(x) = k est l'ensemble des abscisses des points d'intersection de (C_f) et (Δ) .

EXEMPLE

Soit f la fonction dont la courbe représentative (C_f) est donnée ci-après. Résoudre graphiquement l'équation f(x)=1.

La courbe (C_f) et la droite (Δ) : y=1 se coupent en trois points A(-2,1); B(0,1); C(1,1) alors l'ensemble de solutions de l'équation f(x)=1 est $S=\{-2,0,1\}$.

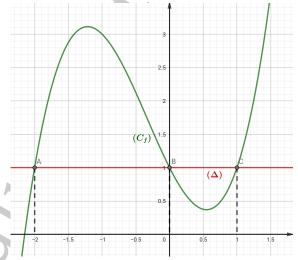


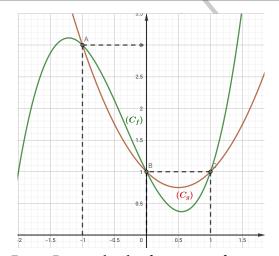
Figure A - courbe de la fonction *f*

PROPOSITION 2

Soient f et g deux fonction numériques définies sur un même ensemble de définition D dont les courbes représentatives respectives sont (C_f) et (C_g) dans un repère orthonormé.

Pour résoudre graphiquement l'équation f(x) = g(x), on suit les étapes suivantes :

- lacktriangle Dans le même repère orthonormé, on construit (C_f) et (C_g) les courbe représentative des fonctions f et g.
- ▲ On détermine les points d'intersection entre (C_f) et (C_g) lorsqu'ils existent.
- L'ensemble des solutions de l'équation f(x) = g(x) est l'ensemble des abscisses des points d'intersection de (C_f) et (C_g) .



FigureB - courbe des fonctions f et g

EXEMPLE

Soient f et g deux fonction numériques définies sur un même ensemble de définition D dont les courbes représentatives respectives (C_f) et (C_g) dans un repère orthonormé sont données ci-contre.

Résoudre graphiquement l'équation f(x) = g(x). Après avoir tracé les deux courbes dans un repère orthonormé, on constate qu'elles se coupent en deux points A(-1,3), B(0,1) et C(1,1). alors l'ensemble des solutions de l'équation f(x) = g(x) est $S = \{-1,0,1\}$

PROPOSITION 1

Soit f une fonction numérique définie sur son domaine de définition D_f et $k \in \mathbb{R}$.

- Pour résoudre graphiquement l'inéquation $f(x) \le k$, on suit les étapes suivantes :
 - lacktriangle Dans un repère orthonormé, on construit (C_f) la courbe représentative de la fonction f.
 - **Δ** Dans le même repère, on construit (Δ) la droite d'équation y = k
 - On détermine les points d'intersection entre (C_f) et (Δ) lorsqu'ils existent.
 - L'ensemble des solutions de l'inéquation $f(x) \le k$ est l'ensemble des abscisses des points de (C_f) situés en dessous de la droite (Δ) .
- Pour résoudre graphiquement l'inéquation $f(x) \ge k$, on suit les étapes suivantes :
 - **D**ans un repère orthonormé, on construit (C_f) la courbe représentative de la fonction f.
 - lacktriangle Dans le même repère, on construit (Δ) la droite d'équation y=k
 - \blacktriangle On détermine les points d'intersection entre (C_f) et (Δ) lorsqu'ils existent.
 - L'ensemble des solutions de l'inéquation $f(x) \ge k$ est l'ensemble des abscisses des points de (C_f) situés au dessus de la droite (Δ) .

EXEMPLE 1

Soit f la fonction dont la courbe représentative (C_f) est donnée ci-contre. Résoudre graphiquement l'inéquation $f(x) \le 1$.

La courbe (C_f) et la droite (Δ) : y=1 se coupent en trois points A(-2,1); B(1,1); C(2,1) alors l'ensemble de solutions de l'équation $f(x) \le 1$ est l'ensemble des abscisses des points des portions roses de la courbe (C_f) soit $S=]-\infty,-2] \cup [0,1]$.

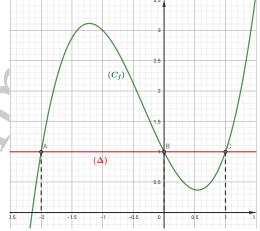
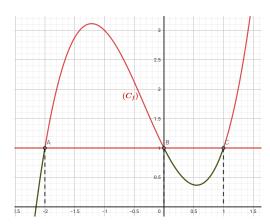


Figure C - courbe de la fonction f

EXEMPLE 2

Soit f la fonction dont la courbe représentative (C_f) est donnée ci-contre. Résoudre graphiquement l'inéquation $f(x) \ge 1$.

La courbe (C_f) et la droite (Δ) : y=1 se coupent en trois points A(-2,1); B(1,1); C(2,1) alors l'ensemble de solutions de l'équation $f(x) \ge 1$ est l'ensemble des abscisses des points des portions rouges de la courbe (C_f) soit $S = [-2,0] \cup [1,+\infty[$.



FigureD - courbe de la fonction *f*

V- ETUDE ET COURBES DES FONCTIONS DE REFERENCE

V-1- FONCTION CARREE $x \mapsto x^2$

- ▲ La fonction $x \mapsto x^2$ s'appelle **la fonction carrée**
- lacktriangle La fonction carrée est définie sur $\mathbb R$ et est paire
- **La fonction carrée est décroissante** sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .

La courbe représentative de la fonction carrée s'appelle la parabole de sommet l'origine du repère O(0,0) et d'axe de symétrie l'axe des ordonnées.

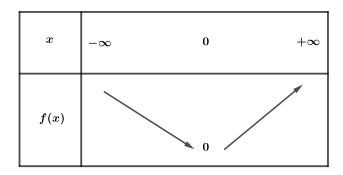


Figure 11 – Tableau de variation de la fonction carrée

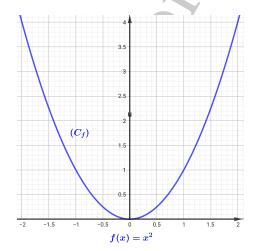


FIGURE 12 - Courbe de la fonction carrée : Parabole

V-2- FONCTION inverse $x \mapsto \frac{1}{x}$

DEFINITION ET PROPRIETES

- La fonction $x\mapsto \frac{1}{x}$ s'appelle **la fonction inverse** La fonction inverse est définie sur \mathbb{R}^* et elle est **impaire**
- La fonction inverse est décroissante sur $]-\infty,0[$ et sur $]0,+\infty[$.
- La courbe représentative de la fonction inverse s'appelle l'hyperbole de centre de symétrie l'origine du repère O(0,0)
- \blacktriangle L'hyperbole admet une asymptote horizontale d'équation y=0 et une asymptote verticale d'équation x = 0.

$$f(x) = \frac{1}{x}$$

$$x - \infty \qquad 0 \qquad + \infty$$

Figure 13 – Tableau de variation de la fonction inverse

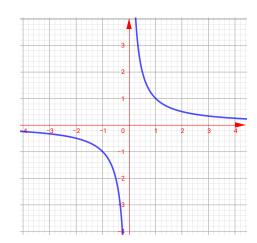


Figure 14 – Courbe de la fonction inverse : Hyperbole

V-3- FONCTION RACINE CARREE $x \mapsto \sqrt{x}$

DEFINITION ET PROPRIETES

- ▲ La fonction $x \mapsto \sqrt{x}$ s'appelle la fonction racine carrée
- \blacktriangle La fonction racine carrée est définie sur \mathbb{R}^+
- **La fonction racine carrée est croissante** sur \mathbb{R}^+

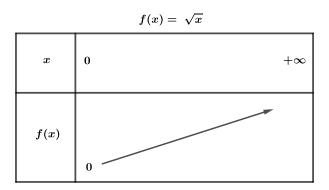


Figure 15 – Tableau de variation de la fonction racine carrée

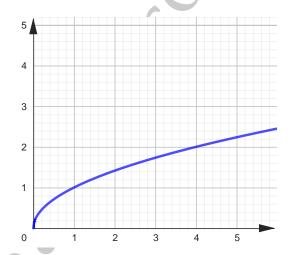


Figure 16 – Courbe de la fonction racine carrée

V-4- FONCTION CUBE $x \mapsto x^3$

DEFINITION ET PROPRIETES

- ▲ La fonction $x \mapsto x^3$ s'appelle la fonction cube
- \blacktriangle La fonction cube est définie sur \mathbb{R}^+
- ▲ La fonction cube est **croissante** sur ℝ

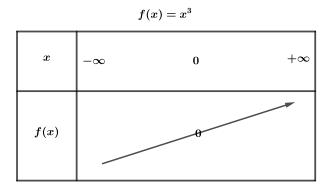


Figure 17 – Tableau de variation de la fonction cube

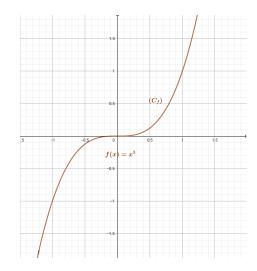


Figure 18 – Courbe de la fonction cube

V-5- FONCTION VALEUR ABSOLUE $x \mapsto |x|$

DEFINITION ET PROPRIETES

- ▲ La fonction $x \mapsto |x|$ s'appelle la fonction valeur absolue
- ▲ La fonction cube est définie sur \mathbb{R} par $\begin{cases} |x| = x \Leftrightarrow x \geq 0 \\ |x| = -x \Leftrightarrow x \leq 0 \end{cases}$ et elle est **impaire**
- \blacktriangle La fonction valeur absolue est **croissante** sur \mathbb{R}^+ et elle est **décroissante** sur \mathbb{R}^-

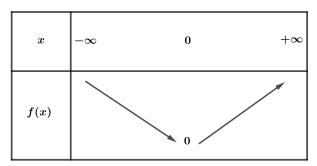


Figure 19 – Tableau de variation de la fonction valeur absolue

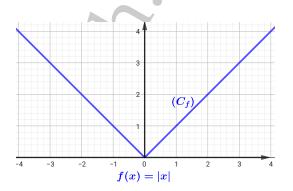


Figure 20 – Courbe de la fonction valeur absolue

VI- ETUDE ET COURBES DES FONCTIONS ASSOCIEES

DEFINITION

Soit f une fonction de référence définie sur son domaine de définition D_f et (C_f) est sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit g une fonction définie sur son domaine de définition D_g et dont la courbe représentative dans le repère $(O; \vec{i}, \vec{j})$ est (C_g) .

On dit que les fonctions g et f sont associées ou conjointes si leurs représentations graphiques (C_f) et (C_g) se déduisent l'une de l'autre par une transformation géométrique classique : translation, réflexion, symétrie centrale...

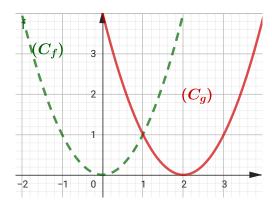
VI-1- COURBES OBTENUES PAR TRANSLATION

REGLE 1

Soit $a \in \mathbb{R}^*$. La courbe d'équation y = f(x-a) est obtenue à partir de la courbe (C_f) grâce à la translation de vecteur \vec{ai}

Exemple

On pose $f(x) = x^2$ et $g(x) = (x-2)^2$ On obtient la courbe (C_g) par la translation de vecteur $2\vec{i}$ de la courbe (C_f) .



FigureE - courbes des fonctions $x \mapsto x^2$ *et* $x \mapsto (x-2)^2$

REGLE 2

Soit $b \in \mathbb{R}^*$. La courbe d'équation y = f(x) + b est obtenue à partir de la courbe (C_f) grâce à la translation de vecteur $b\vec{j}$

Exemple

 $\begin{array}{ll} \overline{\text{On pose}} & f(x) = x^2 & \text{et} & g(x) = x^2 + 3 \\ \text{On obtient la courbe} & (C_g) & \text{par la translation de vecteur} \\ 3\vec{j} & \text{de la courbe} & (C_f) \ . \end{array}$

REGLE 3
Soit $(a,b) \in \mathbb{R}^2$. La courbe d'équation y = f(x-a) + b est obtenue à partir de la courbe (C_f) grâce à la translation de vecteur $\vec{ai} + \vec{bj}$

Exemple

On pose $f(x) = x^2$ et $g(x) = (x-1)^2 + 2$ On obtient la courbe (C_g) par la translation de vecteur $\vec{i} + 2\vec{j}$ de la courbe (C_f) .

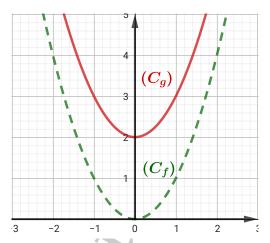
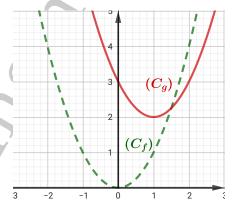


Figure F - courbes des fonctions $f: x \mapsto x^2$ et $g: x \mapsto x^2 + 2$



FigureG - courbes des fonctions $f: x \mapsto x^2$ et $g: x \mapsto (x-1)^2 + 2$

VI-2- COURBES OBTENUES PAR REFLEXION D'AXE (O, \vec{i})

REGLE 4

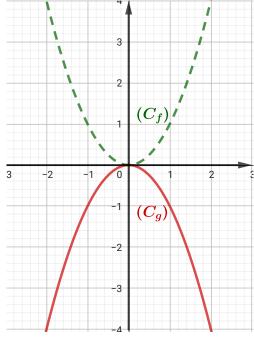
La courbe d'équation

y = -f(x) est obtenue à partir de la courbe (C_f) grâce à la symétrie axiale d'axe l'axe des abscisses .

Exemple

On pose $f(x) = x^2$ et $g(x) = -x^2$ On obtient la courbe (C_{σ}) par la symétrie

On obtient la courbe (C_g) par la symétrie axiale d'axe l'axe des abscisses de la courbe (C_f) .



FigureH - courbes des fonctions $f: x \mapsto x^2 \ et \ g: x \mapsto -x^2$

REGLE 5

La courbe d'équation

y = f(-x) est obtenue à partir de la courbe (C_f) grâce à la symétrie axiale d'axe l'axe des ordonnées

Exemple

On pose $f(x) = x^2 - 2x - 3$ et g(x) = f(-x)On obtient la courbe (C_g) par la symétrie axiale d'axe l'axe des ordonnées de la courbe (C_f)

REGLE 6

La courbe d'équation

y = |f(x)| est obtenue à partir de la courbe (C_f) de la façon suivante :

 \star elle coinside avec la courbe (C_f) lorsque celle-ci est au dessus de l'axe des abscisses.

 \star elle coinside avec le symétrique de la courbe (C_f) lorsque celle-ci est en dessous de l'axe des abscisses

Exemple

On pose
$$f(x) = x^2 - 2x - 3$$
 et $g(x) = |f(x)| = |x^2 - 2x - 3|$

On obtient la courbe (C_g) en conservant les parties de la courbe (C_f) qui sont au dessus de l'axe des abscisses et on prend le symétrique des parties de la courbe (C_f) qui sont en dessous de l'axe des abscisses

REGLE 7

La courbe d'équation

y = f(|x|) est obtenue à partir de la courbe (C_f) de la façon suivante :

 \star elle coinside avec la partie de la courbe (C_f) correspondant aux valeurs positives de x. Notons la C'

 \star elle coinside avec le symétrique de la partie C' de la courbe (C_f) pour les valeurs négatives de x par rapport à l'axe des ordonnées.

Exemple

On pose
$$f(x) = x^2 - 2x - 3$$
 et $g(x) = f(|x|) = |x|^2 + 2|x| - 3$

On obtient la courbe (C_g) en conservant le partie de la courbe (C_f) qui corresponr aux valeurs positives de x puis le symétrique de cette première partie de la courbe

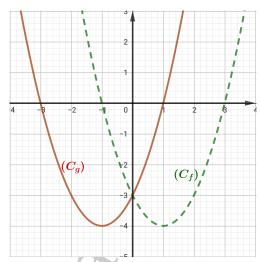


Figure K - courbes des fonctions $f: x \mapsto x^2 - 2x - 3$ et $g: x \mapsto x^2 + 2x - 3$

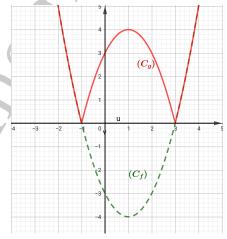
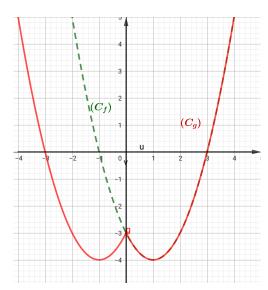


Figure L - courbes des fonctions $f: x \mapsto x^2 - 2x - 3$ et $g: x \mapsto |x^2 - 2x - 3|$



FigureM - courbes des fonctions $f: x \mapsto x^2 - 2x - 3$ et $g: x \mapsto |x|^2 - 2|x| - 3$

 (C_f) qui correspond aux valeurs négatives de x par rapport à l'axe des ordonnées.

VI-3- COURBES OBTENUES PAR AFFINITE ORTHOGONALE

REGLE 5

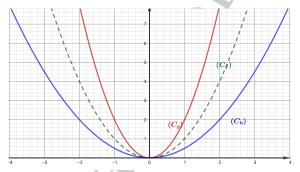
La courbe d'équation

y=af(x) est obtenue à partir de la courbe (C_f) grâce à l'affinité orthogonale d'axe l'axe des abscisses et de rapport a

Exemple

 $\overline{\text{On pose}} \ f(x) = x^2 \ \text{et} \ g(x) = 2f(x)$

On obtient la courbe (C_g) par l'affinité orthogonale d'axe l'axe des abscisses et de rapport 2 à partir de la courbe (C_f)



FigureN - courbes des fonctions $f: x \mapsto x^2$, $g: x \mapsto 2x^2$ et $h: x \mapsto \frac{1}{2}x^2$

VII- EXEMPLES DE FONCTIONS ASSOCIEES

VII-1- FONCTION POLYNOME DU SECOND DEGRE : $x \mapsto ax^2 + bx + c$, $a \ne 0$

- **△** Une fonction du type $f: x \mapsto ax^2 + bx + c$, $a \ne 0$ est appelée une fonction polynôme du second degré ou un trinôme.
- La forme canonique de la fonction trinôme $f: x \mapsto ax^2 + bx + c, a \neq 0$ est $f(x) = a(x \alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a}$.
- ▲ Si a > 0 la fonction trinôme est décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .
- ▲ Si a < 0 la fonction trinôme est croissante sur \mathbb{R}^- et décroissante sur \mathbb{R}^+ . ▲

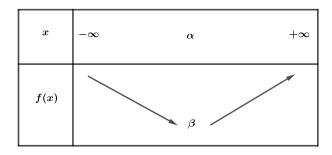


FIGURE 21 – Tableau de variation de la fonction $x \mapsto ax^2 + bx + c$, a > 0

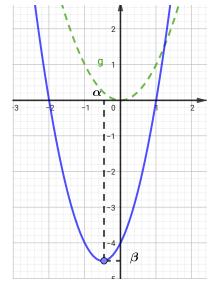


FIGURE 22 – Courbe de la fonction $x \mapsto ax^2 + bx + c$, a > 0

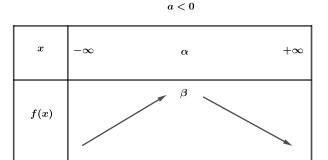


FIGURE 23 – Tableau de variation de la fonction $x \mapsto ax^2 + bx + c$, a < 0

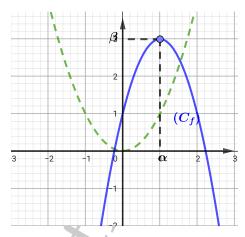


FIGURE 24 – Courbe de la fonction $x \mapsto ax^2 + bx - c$, a < 0

VII-2- FONCTION HOMOGRAPHIQUE: $x \mapsto \frac{ax+b}{cx+d}$, $ad - bc \neq 0$ *et* $c \neq 0$

- **△** Une fonction du type $f: x \mapsto \frac{ax+b}{cx+d}$, $ad-bc \neq 0$ est appelée une fonction homographique.
- f L'ensemble de définition de la fonction homographique f est $D_f = \mathbb{R} \left\{-\frac{d}{c}\right\}$
- lacktriangle La fonction homographique f s'écrit d'une manière unique sous la forme
- . $f(x) = \alpha + \frac{\beta}{cx+d}$, où α, β, c et d sont des réels tels que $c \neq 0$.
- lacktriangle La courbe représentative (C_f) d'une fonction homographique f s'appelle **une hyperbole** .
- **L**a droite d'équation $y = \alpha$ est une asymptote horizontale à l'hyperbole (C_f) .
- **L**a droite d'équation $x = -\frac{d}{c}$ est une asymptote verticale à l'hyperbole (C_f) .
- Le point d'intersection des deux asymptotes à l'hyperbole (C_f) est le centre de symétrie de l'hyperbole (C_f) .
- La fonction f est croissante sur chaque intervalle de son domaine de définition si et seulement si ad bc > 0
- lacktriangle La fonction f est décroissante sur chaque intervalle de son domaine de définition si et seulement si ad-bc<0

$$ad - bc > 0$$

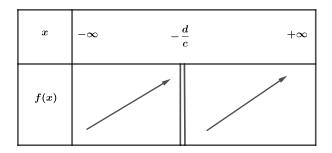


Figure 25 – Tableau de variation de la fonction $x \mapsto \frac{ax+b}{cx+d}$, $c \neq 0$

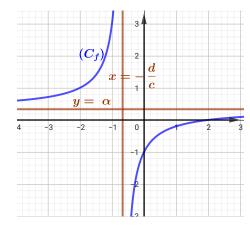


Figure 26 – Courbe de la fonction $x \mapsto \frac{ax+b}{cx+d}$, $c \neq 0$

ad-bc<0

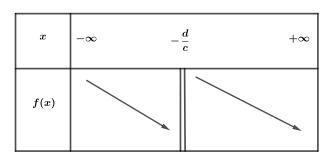


Figure 27 – Tableau de variation de la fonction $x \mapsto$ $\frac{ax+b}{cx+d}$, $c \neq 0$

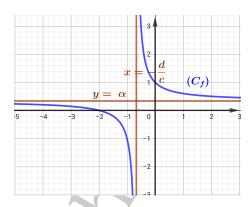


Figure 28 – Courbe de la fonction $x \mapsto \frac{ax+b}{cx+d}$,

VII-3- FONCTION : $x \mapsto \sqrt{x-a}$, $a \in \mathbb{R}$

- L'ensemble de définition de la fonction $f: x \mapsto \sqrt{x-a}, \ a \in \mathbb{R}$ est $D_f = [a, +\infty[$ La fonction f est croissante sur chaque intervalle de son domaine de définition D_f
- La courbe (C_f) s'obtient par une translation de celle de la fonction racine carrée de vecteur \vec{ai}

$$f(x) = \sqrt{x-a}$$

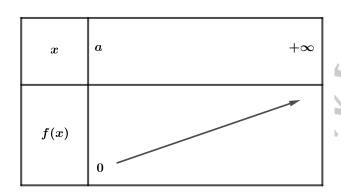


Figure 29 – Tableau de variation de la fonction $x \mapsto$ $\sqrt{x-a}$, $a \in \mathbb{R}$

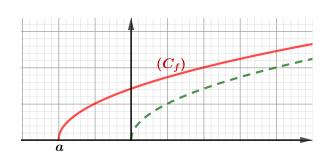


Figure 30 – Courbe de la fonction x $\sqrt{x-a}$, $a \in \mathbb{R}$