Chapitre 12:

TRANSFORMATIONS DU PLAN

TABLE DES MATIERES

I- Transformations dans le plan

II- Symétrie axiale

III- Symétrie centrale

IV- Translation

V- Homothétie

I- TRANSFORMATION DANS LE PLAN

DEFINITION 1

Une transformation du plan \mathcal{P} est une application T du plan \mathcal{P} dans lui même qui associe à chaque point M du plan \mathcal{P} un point M', on écrit T(M)=M', qui vérifie une ou plusieurs conditions. On écrit aussi :

$$\begin{array}{ccc} T: \mathcal{P} & \longrightarrow & \mathcal{P} \\ M & \longmapsto & T(M) = M' \end{array}$$

EXEMPLE

On considère A et B deux points fixes du plan \mathcal{P} .

Soit f la transformation du plan \mathcal{P} définie par : f(M) = M' telle que $\overrightarrow{MM'} = \overrightarrow{MA} + 2\overrightarrow{AB}$.

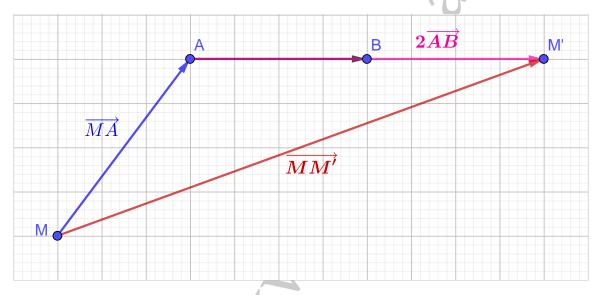


Figure 1

REMARQUE

Les transformations du plan qu'on va étudier cette année sont : la symétrie axiale; la symétrie centrale; la translation et l'homothétie.

DEFINITION 2

Soit T une transformation du plan \mathcal{P} et soit A un point du plan.

On dit que Le point A est invariant par la transformation T si, et seulement si T(A) = A

II- SYMETRIE AXIALE

DEFINITION

Soit (Δ) une droite du plan \mathcal{P} .

La symétrie axiale d'axe (Δ) est la transformation du plan qui transforme tout point M du plan en un point M' tel que la droite (Δ) soit la médiatrice du segment [MM'].

La symétrie axiale d'axe (Δ) est notée : $S_{(\Delta)}$.

Autrement dit : $M' = S_{(\Delta)}(M)$ si, et seulement si (Δ) est la médiatrice du segment [MM'].

REMARQUE

 $M' = S_{(\Delta)}(M)$ si la droite (Δ) passe par le milieu du segment [MM'] et $(\Delta) \perp (MM')$.

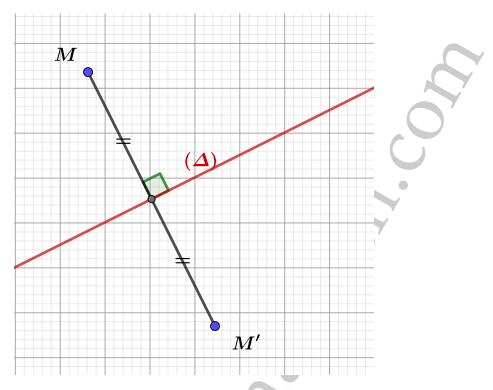


Figure 2

PROPOSITION 1 (Propriétés de conservation)

Soit $S_{(\Delta)}$ la symétrie axiale par rapport à la droite (Δ) .

- **Tous** les points de la droite (Δ) sont invariants par la symétrie axiale $S_{(\Delta)}$.
- ▲ La symétrie axiale $S_{(\Delta)}$ conserve :
 - l'alignement des points : Les symétriques de trois points alignés par une symétrie axiale sont alignés.
 - la distance entre deux points : un segment et son image par une symétrie axiale ont la même longueur.
 - le parallélisme : les images de deux droites parallèles par une symétrie axiale, sont parallèles.
 - les mesures des angles : un angle et son symétrique par une symétrie axiale ont la même mesure.
 - · les périmètres et les aires.

PROPOSITION 2 (Images de quelques figures par une symétrie axiale)

- Le symétrique d'une droite (D) par une symétrie axiale $S_{(\Delta)}$ est une droite (D') telles que :
 - $(D) \parallel (D') \text{ si } (D) \parallel (\Delta)$
 - (D), (Δ) et (D') se coupent en un point si (D) et (Δ) ne sont pas parallèles.
- ♦ Le symétrique d'un segment [AB] par une symétrie axiale $S_{(Δ)}$ est un segment [A'B'] tels que $A' = S_{(Δ)}(A)$ et $B' = S_{(Δ)}(B)$ et A'B' = AB.
- lackloangle Les symétriques de deux droites parallèles par une symétrie axiale $S_{(\Delta)}$ sont deux droites parallèles entre elles.
- $lackbox{}$ Les symétriques de deux droites perpendiculaires par une symétrie axiale $S_{(\Delta)}$ sont deux droites perpendiculaires entre elles.
- ♦ Le symétrique d'un cercle C(O,r) par une symétrie axiale $S_{(\Delta)}$ est un cercle C'(O',r) de même rayon tel que $O' = S_{(\Delta)}(O)$.

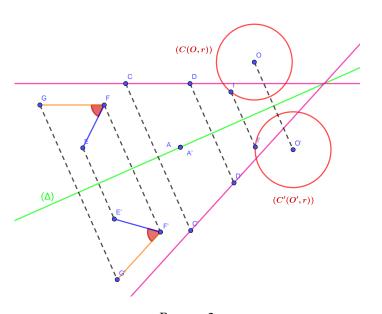


Figure 3 Symétrique d'un cercle par une symétrie axiale

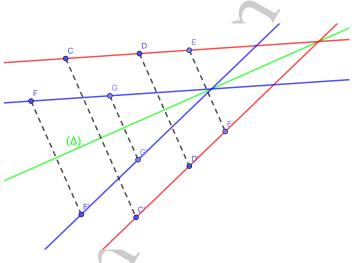


Figure 4

III- SYMETRIE CENTRALE

DEFINITION

Soit Ω un point du plan \mathcal{P} .

La symétrie centrale de centre Ω est la transformation du plan qui transforme tout point M du plan en un point M' tel que le point Ω soit le milieu du segment [MM'].

La symétrie centrale de centre Ω est notée : S_{Ω} .

Autrement dit : $M' = S_{\Omega}(M)$ si, et seulement si Ω est le milieu du segment [MM'].

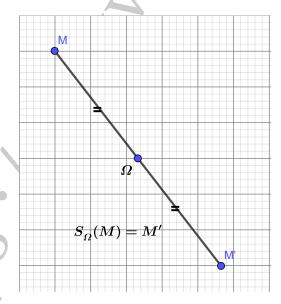


Figure 5

PROPRIETES

Soit Ω un point du plan.

★ Ω est l'unique point invariant de la symétrie centrale S_{Ω} .

- \star $S_{\Omega}(M) = M'$ si et seulement si $\overrightarrow{\Omega M'} = -\overrightarrow{\Omega M}$.
- \star Si $S_{\Omega}(A)=A'$ et $S_{\Omega}(B)=B'$, alors le quadrilatère ABA'B' est un parallélogramme.

PROPRIETE CARACTERISTIQUE DE LA SYMETRIE CENTRALE

Une transformation T du plan est une **symétrie centrale de centre** Ω , si et seulement si pour tous les points M et N du plan on a : $\overrightarrow{M'N'} = -\overrightarrow{MN}$ avec T(M) = M' et T(N) = N'.

PROPOSITION 1 quad (Propriétés de conservation)

Soit S_{Ω} la symétrie centrale de centre le point Ω .

- **L**e seul point invariant par la symétrie centrale S_{Ω} est son centre S_{Ω} .
- **Δ** La symétrie centrale S_{Ω} conserve :
 - l'alignement des points : Les symétriques de trois points alignés par une symétrie centrale sont alignés.
 - la distance entre deux points : un segment et son image par une symétrie centrale ont la même longueur.
 - le parallélisme : les images de deux droites parallèles par une symétrie centrale, sont parallèles.
 - les mesures des angles : un angle et son symétrique par une symétrie centrale ont la même mesure.
 - les périmètres et les aires.

PROPOSITION 2 (Images de quelques figues par une symétrie centrale)

- ♦ Le symétrique d'une droite (D) par une symétrie centrale S_{Ω} est une droite (D') telles que $(D) \parallel (D')$.
- ♦ Le symétrique d'un segment [AB] par une symétrie centrale S_{Ω} est un segment [A'B'] tels que $A' = S_{\Omega}(A)$ et $B' = S_{\Omega}(B)$ et A'B' = AB.
- ♦ Le symétrique d'un cercle C(O,r) par une symétrie centrale S_{Ω} est un cercle C(O',r) de même rayon et tel que $O' = S_{\Omega}(O)$.
- lacklash Les symétriques de deux droites parallèles par une symétrie centrale S_{Ω} sont deux droites parallèles entre elles.
- lacktriangle Les symétriques de deux droites perpendiculaires par une symétrie centrale S_{Ω} sont deux droites perpendiculaires entre elles.
- Le symétrique d'un triangle par une symétrie centrale S_{Ω} est un triangle.

IV-TRANSLATION

DEFINITION

Soit \vec{u} un vecteur du plan.

La translation de vecteur \vec{u} est la transformation du plan qui transforme tout point M du plan en un unique point M' tel que $\overrightarrow{MM'} = \vec{u}$.

La translation de vecteur \vec{u} est notée $t_{\vec{u}}$.

Autrement dit : $M' = t_{\vec{u}}(M)$ si, et seulement si $\overrightarrow{MM'} = \vec{u}$.

Remarque

Soient A et B deux points distincts du plan. La translation qui transforme A en B est la translation de vecteur

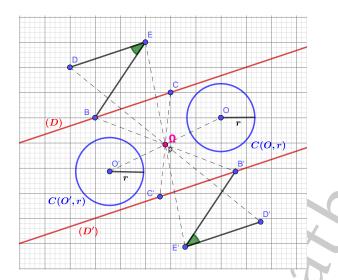


Figure 6 Les images de quelques figures par une symétrie centrale

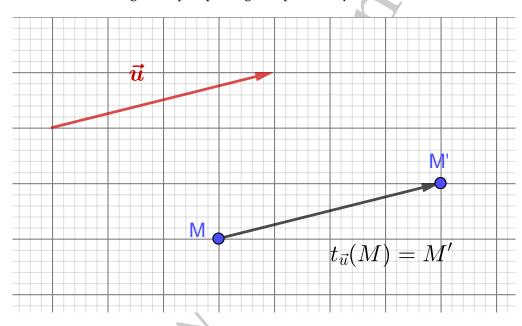


Figure 7

 \overrightarrow{AB} . Et on a : pour tous les points M et M' du plan, $t_{\overrightarrow{AB}}(M) = M'$ si, et seulement si $\overrightarrow{MM'} = \overrightarrow{AB}$.

PROPRIETES

Soit $t_{\vec{u}}$ une translation de vecteur non nul \vec{u} .

- Aucun point du plan n'est invariant par la translation $t_{\vec{u}}$.
- ▲ Soient A et B deux points du plan et $A' = t_{\vec{u}}(A)$ et $B' = t_{\vec{u}}(B)$, alors $\overrightarrow{A'B'} = \overrightarrow{AB}$ et le quadrilatère AA'B'B est un parallélogramme.

PROPRIETE CARACTERISTIQUE DE LA TRANSLATION

Une transformation T du plan est une **translation de vecteur** \vec{u} , si et seulement si pour tous les points M et N du plan on a : $\overrightarrow{M'N'} = -\overrightarrow{MN}$ avec T(M) = M' et T(N) = N'.

PROPOSITION

Soit $t_{\vec{u}}$ la translation de vecteur non nul \vec{u} . La translation $t_{\vec{u}}$ conserve :

- l'alignement des points : Les images de trois points alignés par la translation $t_{\vec{u}}$ sont alignés.
- la distance entre deux points : un segment et son image par la translation $t_{\vec{u}}$ ont la même longueur.
- le parallélisme : les images de deux droites parallèles par la translation $t_{\vec{u}}$, sont parallèles.
- les mesures des angles : un angle et son symétrique par la translation $t_{\vec{u}}$ ont la même mesure.
- les périmètres et les aires.

PROPOSITION

- ▲ L'image d'une droite (D) par la translation $t_{\vec{u}}$ est une droite (D') telles que $(D) \parallel (D')$.
- ▲ L'image d'un segment [AB] par la translation $t_{\vec{u}}$ est un segment [A'B'] tels que $A' = t_{\vec{u}}(A)$ et $B' = t_{\vec{v}}(B)$ et A'B' = AB.
- f L'image d'un angle par la translation $t_{\vec{u}}$ est un angle de même mesure.
- ▲ L'image d'un cercle C(O,r) par la translation $t_{\vec{u}}$ est un cercle C'(O',r) de même rayon tel que $O' = S_{\Omega}(O)$.
- ▲ L'image d'un triangle par la translation $t_{\vec{u}}$ est un triangle.
- \blacktriangle Les images de deux droites parallèles par la translation $t_{\vec{u}}$ sont deux droites parallèles.
- Les images de deux droites perpendiculaires par la translation $t_{\vec{u}}$ sont deux droites perpendiculaires.

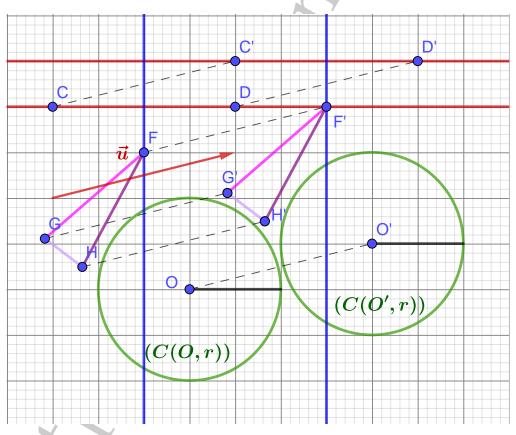


Figure 8

Les images de quelques figures par une translation

IV- HOMOTHETIE

DEFINITION

Soit Ω un point du plan et soit k un nombre réel non nul.

L'homothétie de centre Ω et de rapport k est la transformation du plan qui transforme tout point M du plan en un unique point M' tel que $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$.

L'homothétie de centre Ω et de rapport k est notée $h(\Omega, k)$.

Autrement dit : $M' = h(\Omega, k)(M)$ si, et seulement si $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$.

Remarques

- Si k=1 alors tous les points du plan sont invariants par l'homothétie $h(\Omega,1)$.
- \square Si k=-1 alors l'homothétie $h(\Omega,-1)$ est la symétrie centrale de centre Ω .
- $\square \qquad h(\Omega,k)(M) = M' \quad \text{si et seulement si} \quad h(\Omega,\tfrac{1}{k})(M') = M.$
- □ Si |k| > 1 alors l'homothétie $h(\Omega, k)$ est un agrandissement.
- Si $|k| < 1, k \neq 0$ alors l'homothétie $h(\Omega, k)$ est une réduction.

PROPRIETES

Soit $h(\Omega, k)$ une homothétie dans le plan.

- \otimes Le seul point invariant de l'homothétie $h(\Omega, k)$ est son centre Ω .
- \otimes Si $h(\Omega, k)(A) = A'$ et $h(\Omega, k)(B) = B'$ alors le quadrilatère AA'B'B est un trapèze.
- \otimes L'homothétie $h(\Omega, k)$ ne conserve ni les distances ni les périmètres ni les aires.

PROPRIETE CARACTERISTIQUE DE L'HOMOTHETIE

Une transformation T du plan est une **homothétie de centre** Ω **et de rapport k** si et seulement si pour tous les points M et N du plan on a : $\overrightarrow{M'N'} = k\overrightarrow{MN}$ avec T(M) = M' et T(N) = N'.

PROPOSITION 1 (Propriétés de conservation)

Soit $h(\Omega, k)$ l'homothétie de centre Ω et de rapport k . Alors l'homothétie $h(\Omega, k)$ conserve :

- **l'alignement des points** : Les images de trois points alignés par l'homothétie $h(\Omega, k)$ sont alignés.
- **le parallélisme** : les images de deux droites parallèles par l'homothétie $h(\Omega, k)$ sont parallèles.
- Les images de deux droites perpendiculaires par l'homothétie $h(\Omega, k)$ sont perpendiculaires.
- **Les mesures des angles :** un angle et son image par l'homothétie $h(\Omega, k)$ ont la même mesure.

PROPOSITION 2 (Images de certaines figures par une homothétie)

- ▲ L'image d'une droite (D) par l'homothétie $h(\Omega, k)$ est une droite (D') telles que $(D) \parallel (D')$.
- ▲ L'image d'un segment [AB] par l'homothétie $h(\Omega,k)$ est un segment [A'B'] tels que $A' = h(\Omega,k)(A)$ et $B' = h(\Omega,k)(B)$ et $A'B' = |k| \times AB$.
- **▲** L'image d'un cercle C(O,r) par l'homothétie h(Ω,k) est un cercle C'(O',r') tel que O' = h(Ω,k)(O) et r' = |k| × r.
- ▲ L'image d'un triangle par l'homothétie $h(\Omega, k)$ est un triangle.
- Les images de deux droites parallèles par l'homothétie $h(\Omega,k)$ sont deux droites parallèles.
- **L**es images de deux droites perpendiculaires par l'homothétie $h(\Omega, k)$ sont deux droites perpendiculaires.

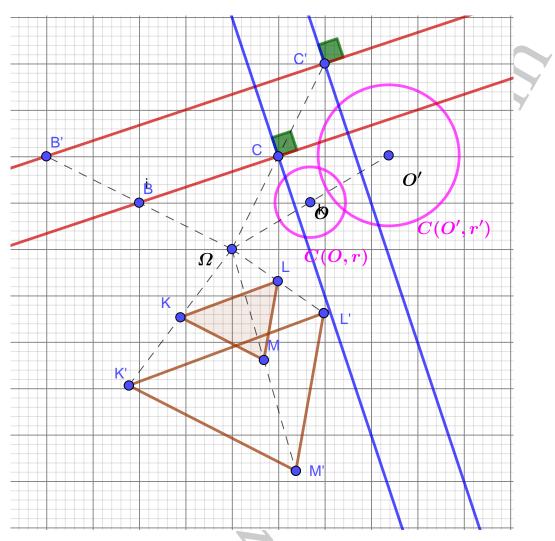


FIGURE 9
Les images de quelques figures par une homothétie de rapport 2