Première APIC S. EL JAAFARI

DÉVELOPPEMENT ET FACTORISATION

TABLES DES MATIÈRES

I - Développement

- I 1 Multiplication d'un nombre par une somme ou une différence
- I 2 Multiplication d'une somme par une somme
- I 3 Identités remarquables

II - Factorisation

- II 1 Mise en évidence d'un facteur commun
- II 2 Utilisation des identités remarquables

I - DÉVELOPPEMENT

DÉFINITION

Développer un produit, c'est le transformer en une somme.

I-1- MULTIPLICATION D'UN NOMBRE PAR UNE SOMME OU UNE DIFFÉRENCE

RÈGLE 1

Pour les nombres entiers relatifs a, b et k, on a :

- \otimes $k \times (a+b) = k \times a + k \times b$.
- \otimes $k \times (a b) = k \times a k \times b$.

On dit que la multiplication est distributive par rapport à l'addition.

REMARQUE

Lorsqu'on effectue une multiplication d'un nombre par une somme ou une différence on dit qu'on applique une distributivité de la multiplication par la somme ou la différence de plusieurs nombres

I - 2 - MULTIPLICATION D'UNE SOMME PAR UNE SOMME

RÈGLE 2

Pour les nombres entiers relatifs *a*, *b*, *c* et *d*, on a :

- $(a+b)(c+d) = a \times (c+d) + b \times (c+d) = a \times c + a \times d + b \times c + b \times d$
- $(a+b)(c-d) = a \times (c-d) + b \times (c-d) = a \times c a \times d + b \times c b \times d$
- $(a-b)(c+d) = a \times (c+d) b \times (c+d) = a \times c + a \times d b \times c b \times d$
- $(a-b)(c-d) = a \times (c-d) b \times (c-d) = a \times c a \times d b \times c + b \times d.$

REMARQUE

Lorsqu'on effectue une multiplication d'une somme ou une différence par une somme ou une différence on dit qu'on applique **une double distributivité ou une distributivité double**.

2

I - 3 - IDENTITÉS REMARQUABLES

RÈGLE 3

Pour les nombres entiers relatifs a, b, c et d, on a :

- $(a+b)^2 = a^2 + 2ab + b^2$
- $(a+b)(a-b) = a^2 b^2$

EXEMPLES

Développer puis réduire les expressions suivantes :

$2(x+5) = \dots$	$-3(x-4) = \dots$
$3x(2x+3) = \dots$	$-5x(4-2x) = \dots$
$(x+2)(2x-1) = \dots$	$(3x+2)(4x+3) = \dots$
$(5x+6)(-2x-3) = \dots$	$(x-5)x = \dots$
$(x+3)^2 = \dots$	$(x-5)^2 = \dots$
$(2x+3)(2x-3) = \dots$	$(3x+2)^2 = \dots$

II - FACTORISATION

DÉFINITION

Factoriser une somme ou une différence, c'est la transformer en un produit.

II - 1 - MISE EN ÉVIDENCE D'UN FACTEUR COMMUN

RÈGLE 3

Pour les nombres entiers relatifs a, b et k, on a :

- $k \times a + k \times b = k \times (a + b).$
- $k \times a k \times b = k \times (a b)$.

II - 2 - UTILISATION DES IDENTITÉS REMARQUABLES

RÈGLE 3

- Pour les nombres entiers relatifs a et b, on a: $a^2 + 2ab + b^2 = (a+b)^2$
- $a^{2} 2ab + b^{2} = (a b)^{2}$ $a^{2} b^{2} = (a + b)(a b)$

EXEMPLES

Factoriser les expressions suivantes :

$4x + 6 = \dots$	$5x + 5y = \dots$
$2x^2 - 3x = \dots$	$16a^2 + 12a = \dots$
$2(x+1) + (x+1)(2x-3) = \dots$	$10z - 2zy = \dots$
$x^2 - 4 = \dots$	$4x^2 + 4x + 1 = \dots$
$9x^2 - 16 = \dots$	$9x^2 - 6x + 1 = \dots$
$4a^2 - 9b^2 = \dots$	$a^2 + 6a + 9 = \dots$

